
Automated Reasoning 2013-14: Coursework 2

Model Checking with NuSMV

Deadline: 16:00 on Tuesday 19th November 2013

1 Getting Started

Create a new directory for your work on a DICE machine and change to that directory.
Download the template files from the coursework web-page

http://www.inf.ed.ac.uk/teaching/courses/ar/coursework/

For instructions on using NuSMV, see the NuSMV Startup Guide, linked to from the
coursework page.

q3

q1 q2

ab

q4

ab

ab ab

Figure 1: Model for Q1

2 Preliminary Exercises

1. Create a NuSMV model for the system shown in Fig 1. For each of the LTL formulas
φ below,

(a) G a

(b) aU b

(c) aU X (a ∧ ¬b)
(d) X¬b ∧G (¬a ∨ ¬b)
(e) X (a ∧ b) ∧ F (¬a ∧ ¬b)

use NuSMV to (i) determine whether the formula φ is valid, and (ii) persuade NuSMV
to exhibit some path which satisfies φ.

1



(Hints :

• It’s simplest to create a NuSMV model of the state machine that uses 1 state
variable with 4 values, one for each of the states of the state machine. Then use
DEFINE assignments to specify in which states the atomic propositions ‘a’ and
‘b’ are true. An alternative approach that can yield a more compact model, but
that can be slightly less straightforward, is to introduce 2 state variables, one for
‘a’, one for ‘b’.

• For (ii), consider what NuSMV does if you direct it to try proving ¬φ.

Check that the answers you get with NuSMV correspond to your own understanding
of the model and the formulas.

Insert your answers into template file ltl-exercise.smv. At the top of this file you
insert your model and a brief explanation of the approach you use for finding satisfying
paths. Then, for each part of the question, you give the NuSMV code for the LTL
formula, state whether the formula is valid, and give an example satisfying path.

2. Which of the following pairs of CTL formulas are equivalent? For those which are,
argue briefly why they are equivalent. For those which are not, create a NuSMV
file with a model and the two formulas, each as a property to check, such that one
property is true of the model and the other false. Use the CTLSPEC keyword in NuSMV
to introduce CTL properties, just as the LTLSPEC keyword introduces LTL properties.

(a) EFφ and EGφ

(b) EFφ ∨ EFψ and EF (φ ∨ ψ)

(c) AFφ ∨AFψ and AF (φ ∨ ψ)

(d) AF¬φ and ¬EGφ

(e) EF¬φ and ¬AFφ

(f) A[φ1 U A[φ2 U φ3]] and A[A[φ1 U φ2] U φ3].

(g) > and AGφ⇒ EGφ

(h) > and EGφ⇒ AGφ

Collect all your answers together in supplied template file ctl-exercise.smv.

2



3 Verifying a FIFO

For this part of the coursework, you verify properties of a model of a FIFO digital circuit.

3.1 Description of provided FIFO model

A block diagram of the FIFO (First In First Out) circuit is shown in Figure 2.

write

full

wr_data

read

rd_data

empty

data queue

Input interface Output interface

clock

Figure 2: FIFO Block Diagram

Abstractly, a FIFO is a variable-length queue of data words. It has two interfaces, one input
interface for adding words to one end of the queue and one output interface for reading and
removing words from the other end of the queue.

The hardware circuit is a synchronous circuit. Its behaviour is governed by a Boolean
clock signal input which usually alternates between true and false at a uniform frequency.
Each time the clock changes from false to true, the internal state of the circuit is updated,
based on the current internal state and inputs to the circuit at that time. When modelling
a synchronous circuit in NuSMV, we do not explicitly include the clock signal. Rather, we
design a transition system that takes one step per clock cycle and that uses the transition
relation to specify how the internal state is updated based on the current state and inputs.
In general synchronous circuits might have outputs that depend both on the current state
and the inputs. Here we use a restriction of this scheme where the outputs depend only on
the current state. For simplicity, the following description of FIFO behaviour is in terms of
the transition system model rather than the hardware circuit.

To add or write a word of data to the FIFO, the data is presented on the write data
wr data input and the Boolean signal write is asserted (set to true). Providing the FIFO is
not currently full, the write data word is then added to the queue on the transition to the
next step. The FIFO has a maximum number of words it can hold in the queue at any one
time. The Boolean full output of the FIFO indicates whether or not it currently holds the
maximum number.

The read data rd data output of the FIFO shows the current end word in the FIFO’s
internal queue, providing that the queue is not empty. The queue being empty is signalled
by the Boolean empty output being set to true. If the Boolean read signal is set to true and

3



the queue is not empty, on the transition to the next step the current end word in the queue
is removed and the word behind it (if any) then appears on the FIFO rd data output.

The provided file fifo.smv presents the NuSMV FIFO model. Have a look at the model.
For simplicity and to ensure rapid NuSMV execution times, we set the DEPTH constant for
the maximum number of words to 5 and the WIDTH constant for the word size to 1. In
practice we would often use larger values for both parameters.

Internally, the FIFO uses a circular buffer to implement the queue. This consists of an
array buffer of words of size DEPTH and two pointers into this array, the read pointer rd p
and the write pointer wr p. If the queue is not empty, the read pointer points to word which
is the current output word of the queue and, if the queue is not full, the write pointer points
to the position to write the next input word. When a new word is written into the queue, the
write pointer is incremented, wrapping it around as necessary. When a word in the queue is
removed, the read points is incremented, wrapping it around as necessary. See Figure 3 for
two examples of the internal configuration of the FIFO when the queue holds the words w0,
w1 and w2, added in that order.

w0

w1

w2

(b)

rd_p

wr_p

0

1

2

3

4

0

1

2

3

4

w0

w1

w2

(a)

rd_p

wr_p

buffer buffer

Figure 3: Examples of internal FIFO configurations

With the provided FIFO realisation, the FIFO could be either empty or full when the two
pointers are equal. The design uses the Boolean empty internal state variable to distinguish
between these two cases.

3.2 Properties to verify

In the provided template file fifo-properties.smv, add formulas for the LTL and CTL
properties requested below. Verify your properties with NuSMV by running the command

NuSMV -pre cpp fifo.smv

The fifo.smv file brings in the fifo-properties.smv file using a preprocessor #include

directive at its end. The -pre cpp option to NuSMV here is necessary to ensure it runs the
C preprocessor on bridge.smv in order to interpret this directive. If you don’t want to see
counter-examples for false formulas, also add the -dcx option.

1. Write LTL formulas for:

(a) the property

4



It is never the case that the FIFO indicates simultaneously it is both
empty and full.

This is an example of a safety property. Safety properties in general are about
undesired behaviour not happening.

(b) the property

If write is asserted forever and read is never asserted, then the FIFO
eventually becomes full.

This is an example of a liveness property. Liveness properties in general are about
desired behaviour actually happening.

(c) the property

At any time, if a 1 is presented to the FIFO data input and write is
asserted, then eventually a 1 will appear on the FIFO data output

with further reasonable assumptions added after the if concerning FIFO signals
such as read, empty or full, to ensure the property checks true.

(d) the same property as in (c), except that it is phrased to hold for any data value,
not just the value 1. Use the ‘frozen variable’ data1 to do this. Consult the
NuSMV user guide for documentation on frozen variables (also sometimes known
in temporal logic as rigid variables).

(e) the same property as in (d), except that, in addition, it requires the empty output
of the FIFO to be set to false at all times inbetween the time the write of the data
is set up and the time the data can first be read out, but not actually at either of
these times. You may take advantage of the fact that the earliest we expect the
data to appear is the step after it is written.

(f) a similar property to that for (d), except that it assumes that two possibly-distinct
data values are input on consecutive steps, and checks for the same two values
appearing on the output on consecutive steps. Use the provided frozen variables
data1 and data2 to refer to the two data values.

All the above properties should be found true of the FIFO model in fifo.smv.

When writing NuSMV formulas, note that the precedence of LTL operators (stronger
to weaker) is F G X ! U V & | ->.

Q2:

2. Write CTL formulas for

(a) the there exists a run for which, at some time onwards, the FIFO is alway full,

(b) from every reachable state in which the FIFO is full, there exists a path along
which the FIFO eventually becomes empty.

Both of the above properties should be found true of the FIFO model in fifo.smv.

5



3.3 Model bug to fix

The FIFO has a bug. In this part you discover and fix it.

1. In the indicated place in fifo-properties.smv, write an LTL property that checks
that

always, if the FIFO indicates it is empty, then the read and write pointers
are equal.

NuSMV should find it false and show a counter-example. Use bounded model checking
to find a shortest counter example. See Section 4 below for a brief introduction to
bounded model checking with NuSMV.

2. Give a summary of the behaviour found in the shortest counter-example in the indi-
cated place in the fifo-properties.smv file.

3. Make a copy of fifo.smv called fifo-fixed.smv. Make changes to the code in the
main module in the fifo-fixed.smv file to fix this bug. Your changes should address
the general problem identified by this bug. Full marks will not be given if you just
make some minimal change such that the particular property you wrote to identify the
problem now checks true.

Do not alter fifo.smv.

At the top of fifo-fixed.smv, add comments briefly describing your diagnosis of the
problem and why your changes fix it.

3.4 Principles of LTL model checking

As remarked in lecture, in LTL model checking of a formula φ, one constructs a Büchi
automaton for ¬φ which accepts just those paths π as input that satisfy ¬φ. The formula is
then true just when the language accepted by this automaton intersected with that accepted
by the model automaton is empty.

Let φ be the LTL property G (full ∧ read⇒ X¬full).

1. Write ¬φ in a normalised form, where the negations are pushed inwards so they just
surround atomic formulas and the only binary logical connectives used are ∧ and ∨.
This should simplify the writing of a Büchi automaton for ¬φ.

2. Write a NuSMV module that emulates a Büchi automaton for ¬φ. Hint: you should
not need an automaton with more than 3 or 4 states.

3. Write an LTL property that captures the acceptance condition of the Büchi automaton,
that, if true, indicates that there are no accepting runs of the automaton.

Insert your solution into the file fifo-ltlmc.smv in the indicated positions at the start.
This file include a copy of the module from fifo.smv, but with the main module renamed
to system and a new main module that composes the system with the negated formula
automaton.

6



4 Using Bounded Model Checking

The counter-examples returned by NuSMV are not always the shortest. To find the shortest,
use the bounded-model-checking (BMC) capabilities of NuSMV.

By default NuSMV uses a sound and complete algorithm based on BDD-based techniques
to check temporal logic formulas. However it also implements an alternate BMC algorithm
which makes use of boolean satisfiability checkers (SAT solvers) such as MiniSat and zchaff.
BMC involves searching for counter-examples to an LTL formula up to a given size (bound).
BMC is an unsound, but complete technique. If it finds a counter-example the counter-
example is real, but it may fail to find a counter-example just because there is none shorter
than the given bounds. BMC is very useful, as it can often handle much larger models than
BDD-based model checking.

To use BMC, enter for example

NuSMV -pre cpp -bmc -bmc length 10 -n 6 bridge.smv

Here, the option -bmc length 10 tells NuSMV to search for counter-examples of up to
size 10 and the option -n 6 tells NuSMV to check just the 6th property (counting from 0)
in the bridge-properties.smv file. If you haven’t changed the ordering, this should be the
number of the property you write for this question.

5 Marking Scheme

The weighting of the parts of this coursework are as follows.

Part Description Weight
Sec 2, Q1 LTL exercise 15%
Sec 2, Q2 CTL exercise 20%
Sec 3.2, Q1,Q2 LTL & CTL FIFO properties 30%
Sec 3.3, Q1,Q2,Q3 Identifying and fixing bug 15%
Sec 3.4, Q1,Q2,Q3 LTL MC idea 20%

6 Submission Instructions

By 14:00 on Thursday 14th November, please submit your solution NuSMV files with the
command

submit ar 2 *.smv

Please make sure to include your student UUN (Universal User Number, of form s???????)
in each of the files you complete.

Late coursework will be penalised in accordance with the Informatics standard policy.
Please consult your coure guide for specific information about this. Also note that, while we
encourage students to discuss the practical among themselves, we take plagiarism seriously
and any such case will be treated appropriately. Please consult the Informatics Student
Handbook for your year for more information about this matter.

5th November 2013

7


