
1	
	

PROPOSED	COURSE	TITLE:	Formal	Verification	

	

PROPOSER(S):	Paul	Jackson	

DATE:	9th	February	2016	

2	
	

SUMMARY

This template contains the following sections, which should be prepared roughly in the order
in which they appear (to avoid spending too much time on preparation of proposals that are
unlikely to be approved):

1. Case for Support
– To be supplied by the proposer and shown to the BoS Academic Secretary prior to preparation of
an in-depth course description

1a. Overall contribution to teaching portfolio

1b. Target audience and expected demand

1c. Relation to existing curriculum

1d. Resources

2. Course descriptor
- This is the official course documentation that will be published if the course is approved, ITO and the
BoS Academic Secretary can assist in its preparation

3. Course materials
- These should be prepared once the Board meeting at which the proposal will be discussed has been
specified

3a. Sample exam question

3b. Sample coursework specification

3c. Sample tutorial/lab sheet question

3d. Any other relevant materials

4. Course management

- This information can be compiled in parallel to the elicitation of comments for section 5.

4a. Course information and publicity

4b. Feedback

4c. Management of teaching delivery

5. Comments

- To be collected by the proposer in good time before the actual BoS meeting and included as
received

5a. Year Organiser Comments

5b. Degree Programme Co-Ordinators

5c. BoS Academic Secretary

[Guidance in square brackets below each item. Please also refer to the guidance for new
course proposals at http://www.inf.ed.ac.uk/student-services/committees/board-of-
studies/course-proposal-guidelines. Examples of previous course proposal submissions are
available on the past meetings page
http://www.inf.ed.ac.uk/admin/committees/bos/meetings/.]

3	
	

SECTION 1 – CASE FOR SUPPORT

[This section should summarise why the new course is needed, how it fits with the existing
course portfolio, the curricula of our Degree Programmes, and delivery of teaching for the
different years it would affect.]

1a. Overall contribution to teaching portfolio

[Explain what motivates the course proposal, e.g. an emergent or maturing research area, a
previous course having become outdated or inappropriate in other ways, novel research
activity or newly acquired expertise in the School, offerings of our competitors.]

There	are	several	motivations	for	this	proposal:	

• Formal	verification	is	an	increasingly	important	verification	approach	in	industrial	digital	
hardware	design	processes.	It	also	is	becoming	important	in	some	software	development	
processes,	most	notably	in	safety-critical	application	areas	and	when	concurrency	problems	
lead	to	total	system	failures.	

• Formal	verification	is	a	showcase	for	computer	science	theory	(e.g.	automata	theory	and	
programming	language	semantics)	and	automated	reasoning	(model	checking	and	SMT	
solving	in	particular),	both	areas	of	strength	for	the	School	of	Informatics.	

• The	current	main	School	offering	in	the	formal	verification	area	is	the	half	of	the	current	
Automated	Reasoning	course	which	covers	hardware	model	checking.			Formal	verification	
of	software	is	currently	only	touched	on	briefly	by	the	Level	11	Advances	in	Programming	
Languages	course.		This	proposal	aims	to	integrate	the	model	checking	half	of	the	AR	course	
with	significant	new	material	on	software	formal	verification	techniques.	

• The	2008	Informatics	Teaching	Programme	Review	recommended	increased	use	of	formal	
notations	and	verification	techniques	in	our	curriculum.		At	the	verbal	feedback	session,	one	
of	the	external	reviewers,	Martyn	Thomas,	expressed	surprise	that	a	School	with	such	
strong	work	in	the	foundations	of	formal	methods	did	not	incorporate	more	applied	formal	
methods	material	in	its	curriculum.	

• As	the	proposal	addresses	the	verification	of	hardware	and	parallel	software,	it	is	an	
attractive	option	for	post-graduate	students	on	the	School’s	PPAR	(Pervasive	Parallelism)	
CDT	programme	

4	
	

1b. Target audience and expected demand

[Describe the type of student the course would appeal to in terms of background, level of
ability, and interests, and the expected class size for the course based on anticipated
demand. A good justification would include some evidence, e.g. by referring to projects in an
area, class sizes in similar courses, employer demand for the skills taught in the course, etc.]

The	course	is	aimed	at	a	broad	range	of	students:		

1. Those	considering	an	industrial	career	in	software	engineering	or	digital	hardware	
engineering.		Formal	verification	tools	are	used	now	in	some	parts	of	industry,	but	uptake	is	
limited	by	lack	of	awareness	of	formal	verification	techniques	and	knowledge	of	relevant	
foundation	subjects,	using		temporal	logics	for	specification	and	using	logic	to	express	
desired	program	properties,	for	example.			

2. PhD	students	undertaking	research	where	formal	verification	techniques	would	be	useful.		
For	example,	students	in	ICSA	designing	new	hardware	or	hardware-related	protocols	could	
well	use	model	checking	to	help	verify	new	ideas.			

3. Those	who	might	be	interested	in	pursuing	research	in	new	formal	verification	techniques.	
While	most	of	the	topics	covered	do	not	directly	lead	in	to	active	research	of	my	own	or	
others	in	Informatics,	an	understanding	of	the	motivation	and	capabilities	of	current	formal	
verification	techniques	would	provide	strong	motivation	for	research	in	several	areas	of	
active	interest.	

I	would	hope	to	attract	at	least	20%	of	the	4th	year	and	MSc	cohorts,	say	60	students.		I	expect	it	to	
have	broader	appeal	than	the	current	Automated	Reasoning	course	which	has	50	students	this	year.	

5	
	

1c. Relation to existing curriculum

[This section should describe how the proposed course relates to existing courses,
programmes, years of study, and specialisms. Every new course should make an important
contribution to the delivery of our Degree Programmes, which are described at
http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm.	

 Please name the Programmes the course will contribute to, and justify its contribution in
relation to courses already available within those programmes. For courses available to MSc
students, describe which specialism(s) the course should be listed under (see
http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-
guide/specialist-areas), and what its significance for the specialism would be. Comment on
the fit of the proposed course with the structure of academic years for which it should be
offered. This is described in the Year Guides linked from
http://web.inf.ed.ac.uk/infweb/student-services/ito/students.]

1d. Resources

[While course approvals do not anticipate the School's decision that a course will actually be
taught in any given year, it is important to describe what resources would be required if it
were run. Please describe how much lecturing, tutoring, exam preparation and marking effort
will be required in steady state, and any additional resources that will be required to set the
course up for the first time. Please make sure that you provide estimates relative to class
size if there are natural limits to its scalability (e.g. due to equipment or space requirements).
Describe the profile of the course team, including lecturer, tutors, markers, and their required
background. Where possible, identify a set of specific lecturers who have confirmed that they
would either like to teach this course apart from the proposer, or who could teach the course
in principle. It is useful to include ideas and suggestions for potential teaching duty re-
allocation (e.g. through course sharing, discontinuation of an existing course, voluntary
teaching over and above normal teaching duties) to be taken into account when resourcing
decisions are made.]

	 	

BSc	Honours,	BEng	Honours,	MInf	Undergraduate	Masters	in	Informatics:	this	proposed	course	is	
strongly	relevant	to	students	in	their	4th	and	5th	year	on	virtually	all	these	programmes,	as	we	expect	
a	large	fraction	of	our	students	to	be	going	on	to	software	engineering	jobs	of	one	kind	or	another.			

Taught	MSc:	for	similar	reasons,	this	course	is	strongly	relevant	to	MSc	students	on	our	Informatics,	
Computer	Science	and	Artificial	Intelligence	programmes	taking	a	number	of	the	available	
specialisms:	most	particularly	Computer	Systems,	Software	Engineering	&	High-Performance	
Computing,	and	also	Cyber-Security	and	Privacy,	Agents,	Knowledge	and	Data,	and	Theoretical	
Computer	Science.	

6	
	

	

	

	 	Annual	time	budgets	for	course-related	activities,	both	steady-state	and	first	year:	

• Lecturing	(Lecturer):		Steady	state:	6		hrs/lecture	to	review,	prepare	updates,	and	deliver.		
With	15	lectures,	this	is	90	hrs.			
First	year:	6	lectures	can	be	brought	in	from	the	current	AR	course.	8	new	lectures	needed,	
each	needing	perhaps	20	hours	to	prepare	and	deliver.			
Total	hours	=	6*6hrs	+	8*20		hrs	=	196	hrs.	

• Formative	coursework	preparation	(Lecturer	+	TA):		Steady	state:	a	key	issue	with	this	
course	will	be	keeping	awareness	of	the	best	exemplars	of	formal	verification	tools	up	to	
date	and	continually	evolving	the	materials	guiding	the	students	in	the	use	of	the	tools.				
20	+	20	hrs.			
First	year:	Current	hardware	model	checking	coursework	for	AR	could	easily	be	adapted.		
New	courseworks	needed	for	software	verification.		I	anticipate	these	can	be	adapted	from	
existing	tutorial	materials	that	accompany	the	selected	verification	tools.		40	+	20	hrs.		

• Coursework	support	(Lecturer	+	Demonstrator):	Steady	state	and	first	year:	10	+	20	hrs	for	
60	students.	Scale	this	with	the	number	of	students.		Activities	here	would	include	providing	
guidance	during	lab	sessions,	informal	formative	assessment	of	student	work	in	booked	
time-slots,	introduction	of	courseworks	in	lecture	slots,	presentation	and	discussion	of	
sample	solutions	in	lecture	slots.		

• Exam	preparation	(Lecturer):	Steady	state:	30	hrs.	First	two	years:	40	hrs.	
• Exam	marking	(Lecturer):	Steady	state	and	first	year:	Allowing	0.5hrs/student,	for	60	

students,	30	hrs.	

	

The	TA	and/or	demonstrator	(possibly	the	same	person)	will	need	to	be	someone	who	comes	to	the	
course	already	with	some	familiarity	with	formal	verification	techniques,	perhaps	through	taking	
the	course	in	some	previous	year.	

Possible	alternate	lecturers	who	could	teach	the	course	in	principle	(*	=	confirmed):		

Stuart	Anderson.		*David	Aspinall.		Julian	Bradfield.		James	Cheney.		Jacques	Fleuriot.		Michael	
Fourman.		Stephen	Gilmore.		Richard	Mayr.		*Ajitha	Rajan.	*Donald	Sannella.	*Ian	Stark.	*Perdita	
Stevens.	

If	this	course	were	to	go	ahead,	then	resources	used	by	the	current	Automated	Reasoning	course	
(e.g.	my	lecturing	on	half	the	course)	would	be	freed.	

	

	

7	
	

SECTION 2 – COURSE DESCRIPTOR

[This is the official course descriptor that will be published by the University and serves as
the authoritative source of information about the course for student via DRPS and PATH.
Current course descriptions in the EUCLID Course Catalogue are available at
www.euclid.ed.ac.uk under ‘DPTs and Courses’, searching for courses beginning ‘INFR’]

2a. Course Title [Name of the course.] :

	

2b. SCQF Credit Points:

[The Scottish Credit and Qualifications Framework specifies where each training component
provided by educational institutions fits into the national education system. Credit points per
course are normally 10 or 20, and a student normally enrols for 60 credits per semester. For
those familiar with the ECTS system, one ECTS credit is equivalent to 2 SCQF credits. See
also http://www.scqf.org.uk/The%20Framework/Credit%20Points.]

SCQF Credit Level:

[These levels correspond to different levels of skills and outcomes, see
http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf.		At University level, Year 1/2
courses are normally level 8, Year 3 can be level 9 or 10, Year 4 10 or 11, and Year 5/MSc
have to be level 11. MSc programmes may permit a small number (up to 30 credits overall)
of level 9 or 10 courses.]

Normal Year Taken: 1/2/3/4/5/MSc

[While a course may be available for more than one year, this should specify when it is
normally taken by a student. “5” here indicates the fifth year of undergraduate Masters
programmes such as MInf.]

Also available in years: 1/2/3/4/5/MSc

Different options are possible depending on the choice of SCQF Credit Level above: for level
9, you should specify if the course is for 3rd year undergraduates only, or also open to MSc
students (default); for level 10, you should specify if the course is available to 3rd year and 4th
year undergraduates (default), 4th year undergraduates only, and whether it should be open
to MSc students; for level 11, a course can be available to 4th and 5th year undergraduates
and MSc students (default), to 5th year undergraduates and MSc students, or to MSc
students only]

Formal	Verification	

10	

11	

4	

5	&	MSc	

8	
	

2c. Subject Area and Specialism Classification:

[Any combination of Computer Science, Artificial Intelligence, Software Engineering and/or
Cognitive Science as appropriate. For courses available to MSc students, please also
specify the relevant MSc specialist area (to be found in the online MSc Year Guide at
http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-
guide/specialist-areas), distinguishing between whether the course should be considered as
“core” or “optional” for the respective specialist area.]

Appropriate/Important for the Following Degree Programmes:

[Please check against programmes from http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm to
determine any specific programmes for which the course would be relevant (in many cases,
information about the Subject Area classification above will be sufficient and specific
programmes do not have to be specified). Some courses may be specifically designed for
non-Informatics students or with students with a specific profile as a potential audience,
please describe this here if appropriate.]

Timetabling Information:

[Provide details on the semester the course should be offered in, specifying any timetabling
constraints to be considered (e.g. overlap of popular combinations, other specialism
courses, external courses etc).]

UG:	Computer	Science,	Artificial	Intelligence,	Software	Engineering.	

MSc:	Optional	course	for	specialist	areas:	Computer	Systems,	Software	Engineering	&	High-
Performance	Computing,	Cyber-Security	and	Privacy,	Agents,	Knowledge	and	Data,	Theoretical	
Computer	Science	

Course	is	appropriate	for		

• all	Undergraduate	Degree	Programmes	apart	from	Cognitive	Science,		
• Postgraduate	Taught	Programmes:	Artificial	Intelligence,	Computer	Science	and	

Informatics,	
• MSc	year	of	Pervasive	Parallelism	Postgraduate	Research	Programme.	

The	course	does	not	depend	on	other	courses,	so	it	could	run	in	either	semester.		The	material	
nicely	complements	that	in	the	new	Automated	Reasoning	course	proposed	by	Jacques	Fleuriot.	
The	new	AR	course	focuses	on	interactive	theorem	proving	techniques,	which	also	can	be	used	
for	formal	verification.		To	cater	for	students	who	might	wish	to	take	both,	it	might	be	good	to	
schedule	this	FV	course	and	the	AR	course	in	different	semesters:	say	AR	Semester	1	and	FV	
Semester	2.		

9	
	

2d. Summary Course Description:

[Provide a brief official description of the course, around 100 words. This should be worded
in a student-friendly way, it is the part of the descriptor a student is most likely to read.]

Course Description:

[Provide an academic description, an outline of the content covered by the course and a
description of the learning experience students can expect to get. See guidance notes at:
http://www.studentsystems.is.ed.ac.uk/staff/Support/User_Guides/CCAM/CCAM_Informatio
n_Captured.html#AcademicDescription].

Formal	verification	is	the	use	of	mathematical	techniques	to	verify	the	correctness	of	various	
kinds	of	engineering	systems:	software	systems	and	digital	hardware	systems,	for	example.	
Formal	verification	techniques	are	exhaustive	and	provide	much	stronger	guarantees	of	
correctness	than	testing	or	simulation-based	approaches.	They	are	particularly	useful	for	safety	
and	security	critical	systems	and	for	when	system	behaviour	is	highly	complex.	The	course	
focuses	on	automated	techniques	that	are	currently	used	in	industry.	It	gives	practical	exposure	
to	current	formal	verification	tools,	explaining	the	input	languages	used	and	introducing	the	
underlying	mathematical	techniques	and	algorithms	used	for	automation.	[98	words]	

	

	

10	
	

In	recent	years	there	have	been	highly	noteworthy	cases	of	the	adoption	of	formal	verification	(FV)	
techniques	in	industry.	For	example,	at	Intel,	FV	has	largely	replaced	simulation-based	verification	
of	their	microprocessors,	at	Microsoft,	FV	is	used	to	certify	that	3rd	–party	drivers	are	free	of	certain	
kinds	of	concurrency	bugs.		As	FV	tools	and	methodologies	improve,	FV	is	expected	to	become	more	
and	more	widely	used	in	industry.	

This	course	aims	to	familiarise	students	with	main	classes	of	FV	techniques	that	are	likely	to	become	
most	widespread	in	industry	in	the	coming	years.	The	intent	is	to	prepare	students	who	might	go	
into	industry	with	sufficient	background	in	FV	that	they	would	be	aware	of	when	and	how	they	
might	deploy	FV	techniques.	The	course	will	also	be	of	interest	to	students	who	wish	to	go	into	
research	developing	techniques	for	future-generation	FV	tools	and	who	might	need	to	use	FV	in	
their	research.		To	satisfy	these	aims,	the	course	has	a	practical	focus,	giving	students	hands-on	
experience	with	a	number	of	tools	and	explaining	their	input	languages	for	specifying	systems	and	
desired	system	properties.		The	course	also	introduces	the	underlying	mathematical	techniques,	
which	gives	students	a	deeper	understanding	of	the	tools	and	will	help	them	use	the	tools	most	
effectively.		

Topics	the	course	covers	include	the	following:	

• Formal	verification	in	context,	its	current	take-up	in	industry	and	challenges	to	its	wider	
adoption		

• Syntax	and	semantics	of	CTL	and	LTL	temporal	logics		
• CTL	and	LTL	model	checking	techniques,	including	automata-based	approaches	and	

bounded	model	checking	with	SAT	solvers	
• The	BDD	data-structure	used	at	the	heart	of	many	model	checkers	
• Writing	models	for	model	checking	and	phrasing	useful	properties	in	CTL	and	LTL	
• Operational	semantics	of	a	simple	imperative	programming	language,	weakest	precondition	

operators	and	verification	condition	generation	
• The	capabilities	of	SMT	solvers	for	discharging	verification	conditions	
• Assertion-based	software	verification		
• Software	model	checking,	focusing	on	its	use	for	finding	concurrency	bugs		
• Pattern-based	detection	of	concurrency	bugs		

Optional	topics	include:		

• Industrial	temporal	logics	such	as	PSL	and	SVA	used	in	hardware	verification	
• Formal	verification	case	studies	
• Formal	verification	of	hybrid	systems,	system	with	both	discrete	state	changes	and	

continuous	state	changes	governed	by	differential	equations		
• Combining	formal	and	simulation-based	verification	methods		
• Dual	use	of	temporal	logic	properties	and	assertions	in	formal	and	simulation-based	

verification	of	hardware	and	software	

The	course	material	is	primarily	introduced	in	lectures	and	assessment	is	by	a	final	exam.		Practical	
exercises	are	provided	to	give	students	familiarity	with	formal	verification	tools	and	help	them	
better	understand	formal	verification	techniques.		Support	for	students	in	using	the	tools	is	
provided	both	by	demonstrators	in	lab	sessions	and	through	the	use	of	an	online	discussion	forum.		
In	addition,	demonstrators	review	student	solutions	to	exercises	and	the	lecturer	both	introduces	
the	exercises	and	presents	model	solutions.		

11	
	

Pre-Requisite Courses:

[Specify any courses that a student must have taken to be permitted to take this course. Pre-
requisites listed in this section can only be waived by special permission from the School's
Curriculum Approval Officer, so they should be treated as "must-have". By default, you may
assume that any student who will register for the course has taken those courses
compulsory for the degree for which the course is listed in previous years. Please include the
FULL course name and course code].

Co-Requisite Courses:

[Specify any courses that should be taken in parallel with the existing course. Note that this
leads to a timetabling constraint that should be mentioned elsewhere in the proposal. Please
include the FULL course name and course code].

Prohibited Combinations:

[Specify any courses that should not be taken in combination with the proposed course.
Please include the FULL course name and course code].

None.	

None.	

Automated	Reasoning	(Level	11)	(INFR11074)	as	currently	run.		This	clash	should	not	be	a	
problem	as	this	new	FV	course	is	being	proposed	a	part	of	a	major	reorganisation	of	the	current	
AR	course	into	this	new	course	and	a	new	AR	course	that	focuses	on	techniques	used	in	
interactive	theorem	proving.		The	new	FV	and	AR	courses	complement	each	other	and	cover	
mutually-exclusive	material.	

12	
	

Other Requirements:

[Please list any further background students should have, including, for example,
mathematical skills, programming ability, experimentation/lab experience, etc. It is important
to consider that unless there are formal prerequisites for participation in a course, other
Schools can register their students onto our courses, so it is important to be clear in this
section. If you want to only permit this by special permission, a statement like "Successful
completion of Year X of an Informatics Single or Combined Honours Degree, or equivalent
by permission of the School." can be included.]

Available to Visiting Students: Yes/No

[Provide a justification if the answer is No.]

2e. Summary of Intended Learning Outcomes (MAXIMUM OF 5):

[List the learning outcomes of the course, emphasising what the impact of the course will be
on an individual who successfully completes it, rather than the activity that will lead to this
outcome. Further guidance is available from
https://canvas.instructure.com/courses/801386/files/24062695]

Incoming	students	are	expected	to	be	familiar	with	discrete	maths	at	a	level	similar	to	that	
taught	in	the	School	of	Informatics	course	Discrete	Mathematics	and	Mathematical	Reasoning	
(INFR08023).		Prior	exposure	to	predicate	logic	is	also	helpful.			Programming	experience	in	an	
imperative	language	such	as	Java,	C	or	C++	is	also	essential	for	handling	the	material	related	to	
software	verification.		For	the	hardware	verification	aspects	of	the	course,	prior	exposure	to	
hardware	design	is	not	needed,	but	students	do	need	to	be	familiar	with	Finite-State	Automata	
concepts.		

Yes.	

On completion of this course, the student will be able to

1. deploy bounded and unbounded model checking techniques to formally verify
temporal logic properties of digital hardware and other finite state systems and
protocols,

2. use an assertion-based software formal-verification tool to verify desired
properties of computer programs,

3. describe formal techniques that can be used for the detection of concurrency
bugs in software,

4. assess the pros and cons of using different automated formal verification
approaches on a previously-unseen hardware or software system.

13	
	

Assessment Information

[Provide a description of all types of assessment that will be used in the course (e.g. written
exam, oral presentation, essay, programming practical, etc) and how each of them will
assess the intended learning outcomes listed above. Where coursework involves group
work, it is important to remember that every student has to be assessed individually for their
contribution to any jointly produced piece of work. Please include any minimum
requirements for assessment components e.g. student must pass all individual pieces of
assessment as well as course overall].

Assessment Weightings:

 Written Examination: 100%

 Practical Examination: 0%

 Coursework: 0%

Time spend on assignments:

[Weightings up to a 70/30 split between exam and coursework are considered standard, any
higher coursework percentage requires a specific justification. The general expectation is
that a 10-point course will have an 80/20 split and include the equivalent of one 20-hour
coursework assignment (although this can be split into several smaller pieces of coursework.
The Practical Examination category should be used for courses with programming exams.
You should not expect that during term time a student will have more than 2-4 hours to
spend on a single assignment for a course per week. Please note that it is possible, and in
many cases desirable, to include formative assignments which are not formally assessed but
submitted for feedback, often in combination with peer assessment.]

Assessment is all by written exam.

As the course focuses on the application of formal verification techniques, most exam
questions will involve presenting various verification scenarios and exploring how
verification techniques might be deployed in those scenarios. Often questions will focus
on some particular aspect of a techniques, exploring for example how well students
understand the input specification languages used by techniques. Other questions might
involve students stepping through the behaviour of verification algorithms on small
examples.

The	course	expects	each	student	to	put	in	30-40hrs	on	the	practical	exercises.		These	exercises	
are	formative	in	nature:	there	is	no	formal	assessment,	but	demonstrators	review	students	
answers	with	them,	and	the	lecturer	presents	and	discusses	model	answers.	In	addition,	
students	receive	support	while	undertaking	the	exercises	from	demonstrators	in	scheduled	labs	
and	from	interactions	with	demonstrators,	the	lecturer	and	each	other	on	a	online	discussion	
forum.	

14	
	

Academic description:

[A more technical summary of the course aims and contents. May include terminology and
technical content that might be more relevant to colleagues and administrators than to
students.]

Syllabus:

[Provide a more detailed description of the contents of the course, e.g. a list of bullet points
roughly corresponding to the topics covered in each individual lecture/tutorial/coursework.
The description should not exceed 500 words but should be detailed enough to allow a
student to have a good idea of what material will be covered in the course. Please keep in
mind that this needs to be flexible enough to allow for minor changes from year to year
without requiring new course approval each time.]

A	number	of	details	are	already	provided	above	in	the	above	Course	Description	section.	A	few	
further	remarks	are	as	follows	

• The	model	checking	is	likely	to	focus	on	the	use	of	the	NuSMV	tool.		This	is	a	mature	free	
tool	that	well	illustrates	the	range	of	introductory	concepts	the	course	covers.	

• For	assertion-based	software	verification,	a	couple	of	alternative	tools	might	be	used:	
o The	SPARK	Ada	toolset	from	Altran	UK	and	AdaCore.		This	is	the	most	mature	

assertion-based	tool	available.	It	is	currently	used	in	a	number	of	commercial	
projects	and	both	tool	and	thorough	training	materials	are	available	for	free.	

o Why3	from	INRIA,	France.	This	is	at	the	core	of	the	SPARK	toolset.		It	can	be	used	
stand-alone	and	also	has	front	ends	for	C	and	Java.		Documentation	is	not	as	
good	as	with	the	SPARK	toolset,	but	students	will	need	to	spend	less	time	getting	
to	grips	with	the	essentials	of	the	input	programming	languages.	

• For	verification	of	concurrent	software	a	prime	candidate	tool	is	CBMC.	

The	Course	Description	above	already	outlines	the	syllabus	down	to	the	lecture	level.		

15	
	

Relevant QAA Computing Curriculum Sections:

[Please see http://www.qaa.ac.uk/en/Publications/Documents/Subject-benchmark-
statement-Computing.aspx.pdf to check which section the course fits into.]

Graduate Attributes, Personal and Professional skills:

[This field should be used to describe the contribution made to the development of a
student’s personal and professional attributes and skills as a result of studying this course –
i.e. the generic and transferable skills beyond the subject of study itself. Reference in
particular should be made to SCQF learning characteristics at the correct level
http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf].

I	assume	this	request	relates	to	Appendix	B	of	this	document,	which	catalogues	a	Body	of	
Knowledge.		

Relevant	topics	in	this	appendix	are:	

• Artificial	Intelligence:	logics,	reasoning.	
• Computer-based	systems:	safety	critical	and	other	high-integrity	systems.	
• Computer	hardware	engineering:	hardware	description	languages	(which	now	include	

temporal	assertion	languages	such	as	PSL	and	SVA),	verification	
• Simulation	and	modelling.	(Formal	verification	is	not	simulation,	but	often	is	an	

alternative	or	supplement	to	simulation,	and	many	issues	are	similar.)	
• Software	engineering:	verification	
• Theoretical	computing:	mathematical	aspects	of	programming	language	definition,	logic	

and	semantics	of	programming	languages,	foundations	of	programming,	software	
specification,	formal	methods	of	system	development.	

	

(I	focus	here	on	characteristics	3-5	from	Level	11	as	these	are	most-obviously	related	to	skills	
beyond	the	subject	of	study)	

3:	Generic	Cognitive	Skills	

• Apply	critical	analysis,	evaluation	and	synthesis	to	forefront	issues,	or	issues	that	are	
informed	by	forefront	developments	in	the	subject/discipline/sector.		

• Critically	review,	consolidate	and	extend	knowledge,	skills,	practices	and	thinking	in	a	
subject/discipline/sector.	

• Deal	with	complex	issues	and	make	informed	judgements	in	situations	in	the	absence	of	
complete	or	consistent	data/information.	

4.	Communication,	ICT	and	numeracy		

Use	a	wide	range	of	routine	skills	and	a	range	of	advanced	and	specialised	skills	as	appropriate	to	
a	subject/discipline/sector,	for	example:		

• Communicate	with	peers,	more	senior	colleagues	and	specialists.		
• Use	a	wide	range	of	ICT	applications	to	support	and	enhance	work	at	this	level	and	

adjust	features	to	suit	purpose.	

16	
	

Reading List:

[Provide a list of relevant readings. See also remarks under 3d.]

• Logic in Computer Science (2nd Ed).why3 Huth and Ryan. Cambridge UP. 2004.
• NuSMV model checker documentation and tutorials. http://nusmv.fbk.eu
• SPARK toolset documentation and training materials. Altran UK. 2016. Overview at

http://intelligent-systems.altran.com/technologies/software-engineering/spark.html
Training materials accessed via SPARK Academic Programme.

• Why3 programme verification toolkit documentation and tutorials. http://why3.lri.fr
• CBMC (Bounded model checker for C and C++) documentation,

http://www.cprover.org/cbmc/.

Breakdown of Learning and Teaching Activities:

[Total number of lecture hours and tutorial hours, with hours for coursework assignments.]

 [The breakdown of learning and teaching activities should only include contact hours with
the students; everything else should be accounted for in the Directed Learning and
Independent Learning hours.

 The total being 10 x course credits. Assume 10 weeks of lectures slots and 10 weeks of
tutorials, though not all of these need to be filled with actual contact hours. As a guideline, if
a 10-pt course has 20 lecture slots in principle, around 15 of these should be filled with
examinable material; the rest should be used for guest lectures, revision sessions,
introductions to assignments, etc. Additional categories of learning and teaching activities
are available, a full list can be found at:

http://www.euclid.ed.ac.uk/Staff/Support/User_Guides/CCAM/Teaching_Learning.htm]

 Lecture Hours: 17 hours (15 max on examinable material. Extras for guest lectures or
lectures on material beyond syllabus.)

 Seminar/Tutorial Hours: 0 hours

 Supervise practical/Workshop/Studio hours: 10 hours

 Summative assessment hours: 2 hours

 Feedback/Feedforward hours: 4 hours

 Directed Learning and Independent Learning hours: 67 hours

 Total hours: 100 hours

You may also find the guidance on ‘Total Contact Teaching Hours’ and ‘Examination &
Assessment Information’ at:
http://www.studentsystems.ed.ac.uk/Staff/Support/User_Guides/CCAM/CCAM_Information_
Captured.html

17	
	

Keywords:

[A list of searchable keywords.]

Verification.		Formal	Verification.		Hardware	verification.		Software	verification.	Model	
checking.		Bounded	model	checking.		Assertions.		SMT	(Satisfiability	modulo	theories).		SAT	
(Satisfiability	solvers).		BDDs.			

18	
	

SECTION 3 - COURSE MATERIALS

3a. Sample exam question(s)

[Sample exam questions with model answers to the individual questions are required for
new courses. A justification of the exam format should be provided where the suggested
format non-standard. The online list of past exam papers gives an idea of what exam
formats are most commonly used and which alternative formats have been
http://www.inf.ed.ac.uk/teaching/exam_papers/.]

The intended exam format is one of the standard ones: 1 compulsory question and then a
choice of 1 of 2 others.

The model checking material for the course is drawn from the current Automated Reasoning
course. A separate document reproduces the model-checking-related questions and
answers from the May 2013 exam.

3b. Sample coursework specification

[Provide a description of a possible assignment with an estimate of effort against each sub-
task and a description of marking criteria.]

There is no coursework.

3c. Sample tutorial/lab sheet questions

[Provide a list of tutorial questions and answers and/or samples of lab sheets.]

For the model checking part of the course, a coursework from the current Automated
Reasoning course will be adapted as a practical exercise and model answers will be made
available. Please find attached the coursework instructions from 2013 as an indication of the
nature of the model checking exercise. An exercise on assertion-based formal software
verification might be crafted from SPARK toolset training materials and exercise on software
model checking from the tutorial provided with the CBMC tool.

3d. Any other relevant materials

[Include anything else that is relevant, possibly in the form of links. If you do not want to
specify a set of concrete readings for the official course descriptor, please list examples
here.]

	

19	
	

SECTION 4 - COURSE MANAGEMENT

4a. Course information and publicity

[Describe what information will be provided at the start of the academic year in which format,
how and where the course will be advertised, what materials will be made available online
and when they will be finalised. Please note that University and School policies require that
all course information is available at the start of the academic year including all teaching
materials and lecture slides.]

4b. Feedback

[Provide details on feedback arrangements for the course. This includes when and how
course feedback is solicited from the class and responded to, what feedback will be provided
on assessment (coursework and exams) within what timeframe, and what opportunities
students will be given to respond to feedback.

The University is committed to a baseline of principles regarding feedback that we have to
implement at every level, these are described at
http://www.docs.sasg.ed.ac.uk/AcademicServices/Policies/Feedback_Standards_Guiding_P
rinciples.pdf.

Further guidance is available from http://www.enhancingfeedback.ed.ac.uk/staff.html.]

Full	information	on	the	course	will	be	provided	online,	linked	to	from	the	course’s	web	page.	

An	online	discussion	forum	will	provide	one	channel	for	feedback	on	all	aspects	of	the	
course,	including	replies	to	questions	concerning	lectures,	practical	exercises	and	previous	
exams.	

Lectures	will	include	feedforward	introductory	presentations	on	the	practical	exercises	and	
walkthroughs	and	discussion	of	model	answers	to	the	exercises.		

Demonstrators	in	labs	will	be	available	for	providing	feedback	on	students	work	on	the	
practical	exercises	on	a	as-needed	basis.		In	addition,	students	will	be	able	to	book	slots,	
maybe	15	mins	in	length,	during	which	a	demonstrator	can	systematically	walk	through	
students’	work	and	compare	it	with	model	solutions.	

We	will	consider	recommending	students	work	in	pairs	on	the	exercises,	so	they	have	the	
benefit	of	peer	feedback.			Students	could	also	meet	with	demonstrators	in	these	pairs,	
which	would	enable	demonstrator	resources	to	be	stretched	further	and	possibly	could	
enable	longer	demonstrator	meeting	times.		

20	
	

4c. Management of teaching delivery

[Provide details on responsibilities of each course staff member, how the lecturer will recruit,
train, and supervise other course staff, what forms of communication with the class will be
used, how required equipment will be procured and maintained. Include information about
what support will be required for this from other parties, e.g. colleagues or the Informatics
Teaching Organisation.]

The	demonstrator(s)	and	TA	will	likely	be	recruited	from	current	PhD	students	in	LFCS	or	
CISA.		

Communication	with	students	will	be	through	lectures,	class	emails,	scheduled	lab	sessions	
and	an	online	discussion	forum.		

All	software	used	on	the	course	is	freely	available	and	runs	on	Linux	machines.	Informatics	
Computing	Support	will	be	asked	to	have	the	software	available	on	all	DICE	machines.		

If	we	use	the	Ada/SPARK	verification	toolset	from	Altran	UK,	Altran	UK	will	be	happy	to	
make	available	some	form	of	their	SPARK	training	materials	that	we	could	use	or	adapt	to	
our	purposes.	

21	
	

SECTION 5 - COMMENTS

 [This section summarises comments received from relevant individuals prior to proposing
the course. If you have not discussed this proposal with others please note this].

A	preliminary	proposal	was	submitted	for	discussion	at	the	Board	of	Studies	meeting	on	4th	
November	2015.		The	proposal	received	strong	support	from	several	present.	

As	noted	in	the	minutes,	the	proposal	was	approved,	subject	to	

1. A	reduction	of	Learning	Outcomes	to	maximum	5.			Originally	there	were	14.		Now	
there	are	4.	

2. A	reduction	of	summative	feedback	to	1.			Originally	there	were	two	summative	
courseworks.		Now	there	are	none;	all	coursework	is	formative.		This	is	seen	as	
having	several	benefits.		It	eliminates	the	need	to	prepare	new	coursework	case	
studies	each	year	and	enables	courseworks	to	be	improved	from	year	to	year.		It	
also	enables	the	provision	of	more	detailed	help	to	students	during	coursework	
periods	and	the	discussion	of	model	solutions	after	these	periods.	

3. Compliance	with	new	workload	assessment	guidelines.		The	elimination	of	
summative	courseworks	and	the	provision	of	at	least	one	formative	coursework	fits	
with	these	guidelines.		Several	feedback	channels	are	discussed	in	this	proposal	for	
providing	timely	high-quality	feedback	to	students	on	their	formative	coursework.		
The	teaching	support	estimates	for	TA	and	demonstrator	time	are	within	the	normal	
limits	set	by	the	School’s	Teaching	Support	Staff	Policy.		

	

	

22	
	

5a. Year Organiser Comments

[Year Organisers are responsible for maintaining the official Year Guides for every year of
study, which, among other things, provide guidance on available course choices and
specialist areas. The Year Organisers of all years for which the course will be offered should
be consulted on the appropriateness and relevance on the course. Issues to consider here
include balance of course offerings across semesters, subject areas, and credit levels,
timetabling implications, fit into the administrative structures used in delivering that year.]

5b. BoS Academic Secretary

[Any proposal has to be checked by the Secretary of the Board of Studies prior to discussion
at the actual Board meeting. This is a placeholder for their comments, mainly on the formal
quality of the content provided above.]

Year	4	Organiser	(Mary	Cryan)	

Comments	being	sought	

Year	5	Organiser	(Mahesh	Marina)	

Comments	being	sought	

Taught	MSc	Year	Organiser	(Paul	Jackson)	

This	course	would	be	a	welcome	addition	to	the	portfolio	of	optional	courses	available	to	
the	MSc	specialisms	cited	in	Section	2c	above.			

Currently,	these	specialisms	have	slightly	more	options	in	Semester	2,	so	adding	this	course	
to	Semester	1	would	improve	the	balance.	However,	as	noted	in	Section	2c,	this	course	
complements	the	proposed	new	AR	course	and	it	might	be	worth	scheduling	them	in	
different	semesters.		If	AR	is	put	in	Semester	1	(replacing	the	current	AR	course	in	Semester	
2),	then	adding	FV	to	Semester	2	would	be	fine.			

	

	

