## Sample exam questions for Inf2 - FDS

1. Consider a histogram of the height of people in a particular cohort from university.

- Would you expect the histogram to be right or left skewed? Why?
- Which statistic is expected to be larger: the mean or the median?
- What transform would you suggest to reduce the effect of outliers?

2. PCA

- Show that the eigenvalues of (a) $X^{\wedge} T X$ and (b) $X X^{\wedge} T$ are all non-negative and real.
- Write down two assumptions that PCA makes about the data.
- If you are given data in 10 dimensions with features $\mathrm{X} 1, . ., \mathrm{X} 10$ and you run PCA with the top three components "explaining $100 \%$ of the variance," what can you conclude about the data?

3. For each of the following, discuss in 2-4 sentences whether there is a possible source for sample bias and what the implications of any conclusions are:

- A well known Tory politician reported that letters into her office were running 3 to 1 in opposition to a second referendum. She concluded that the constituents were strongly opposed to a second referendum.
- An academic researcher is evaluating the effect of a drug on the circadian rhythm of the general population. He enlists undergraduates from the Informatics Forum and uses a table of random numbers to select a sub-population of students. His results suggest that the drug improves sleep duration by 1 hour for the general population.

4. If your sample size increases by a factor of ten, would you expect each of the following to (a) increase (b) decrease (c) neither (d) either (i.e., the statistic might increase or decrease)?

- Population standard deviation
- Sample standard deviation
- Standard error of the mean
- Estimate of the mean

5. For a particular sample of data, you estimate the standard error of the mean as $x$. You want it to be $x / 2$. Roughly how much more data would you need to collect?
6. [Give example of a particular prediction problem].
(a) Would it be more appropriate to use linear or logistic regression for this problem? Explain why.
(b) [maybe some question about feature independence, or which features you might use?]
7. Suppose you have a dataset divided into training, development, and test partitions and you are exploring different machine learning methods. As we've seen in class, some methods are deterministic: they always produce the same results when given the same inputs and hyperparameters, while others are non-deterministic: the results depend on initialization.
(a) Name one deterministic ML method and one non-deterministic method.
(b) [some question about what to use the different partitions for]
(c) [some question about how to evaluate whether one system has higher accuracy than the other, given that results in one case are non-deterministic]
[The above q requires discussing some ML method that's non-deterministic, such as random forests. There may be other ways to ask something related without this, for example randomness from the data itself as in $x$-validation. It needs some thought but the point is to have some connection between stats and the results of ML experiments.]
8. The mean of 10 numbers is 3.8 . Another number is added to this sample and the mean increases to 4.0. What number was added?
[This question, or some variant, would make sense if there is some discussion of algorithmic strategies for dealing with large data sets; in particular streaming data]
*The following are a few questions from past Inf2b papers that would also be relevant here:*
9. Consider a document classication system which was trained with a large data set $D$. An evaluation experiment was carried out using the same data set D. State the main problem with this evaluation, and describe how it can be resolved.
10. Considering the two vectors, $a=\left(\begin{array}{lll}6 & 2 & 4\end{array}\right)$ and $b=\left(\begin{array}{lll}-3 & 1 & 1\end{array}\right.$ 3), find the Pearson correlation coe cient, $\mathrm{r}(\mathrm{a}, \mathrm{b})$.
11. Explain what linearly separable means in pattern recognition. [or: give a diagram of data points and ask if it is linearly separable and what the implications are.]
[Also consider some of the harder questions, but many of these not appropriate because they're about mathematical details of specific methods we likely won't cover.]

The following are suggestions but are more likely to be exercises, because we probably don't want to require calculators for the exam:

Example 12.9 The following table shows the marks of 10 candidates in Physics and Mathematics. Find the product-moment correlation coefficient and comment on your value.

| Mark in <br> Physics $(x)$ | 18 | 20 | 30 | 40 | 46 | 54 | 60 | 80 | 88 | 92 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mark in <br> Mathematics $(y)$ | 42 | 54 | 60 | 54 | 62 | 68 | 80 | 66 | 80 | 100 |

Example 2.6 A random sample of 51 people were asked to record the number of miles they travelled by car in a given week. The distances, to the nearest mile, are shown below.

| 67 | 76 | 85 | 42 | 93 | 48 | 93 | 46 | 52 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 72 | 77 | 53 | 41 | 48 | 86 | 78 | 56 | 80 |
| 70 | 70 | 66 | 62 | 54 | 85 | 60 | 58 | 43 |
| 58 | 74 | 44 | 52 | 74 | 52 | 82 | 78 | 47 |
| 66 | 50 | 67 | 87 | 78 | 86 | 94 | 63 | 72 |
| 63 | 44 | 47 | 57 | 68 | 81 |  |  |  |

(a) Construct a stem and leaf diagram to represent these data.
(b) Find the median and the quartiles of this distribution.
(c) Draw a box plot to represent these data.
(d) Give one advantage of using
(i) a stem and leaf diagram,
(ii) a box plot,
to illustrate data such as that given above.
(L)

The accountant of a company monitors the number of items produced per month by the company, together with the total cost of production. The following table shows the data collected for a random sample of 12 months.

| fitems $(x)(1000 \mathrm{~s})$ | 21 | 39 | 48 | 24 | 72 | 75 | 15 | 35 | 62 | 81 | 12 | 56 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{n} \operatorname{cost}(y)(£ 1000)$ | 40 | 58 | 67 | 45 | 89 | 96 | 37 | 53 | 83 | 102 | 35 | 75 |

(a) Plot these data on a scatter diagram. Explain why this diagram would support the fitting of a regression equation of $y$ on $x$.
(b) Find an equation for the regression line of $y$ on $x$ in the form $y=a+b x$. (Use $\sum x^{2}=30786 ; \sum x y=41444$ )

The selling price of each item produced is $£ 2.20$.
(c) Find the level of output at which total income and total costs are equal. Interpret this value.

