WHAT MAKES A GOOD TUTOR AND DEMONSTRATOR IN INFORMATICS?

Cristina Adriana Alexandru
Cristina.Alexandru@ed.ac.uk
In Essentials, we have seen...

- The responsibilities of demonstrators and tutors
- Why labs and tutorials are important
- The steps of preparing for a lab/tutorial
- Possible activities in labs/tutorials
- How we can gather feedback on how well we are doing as demonstrators or tutors
Schedule

- Presentation by Dr. Iain Murray:
 - What do students want from tutorials?
 - What are tutorials most useful for?
 - What he is expecting from tutors
- Bad vs. good demonstrating
- DOs and DON’Ts of explanations and feedback
- How can we check for understanding?
- How can we encourage interaction in tutorials?
- Dealing with possible challenges in labs and tutorials
BAD VS. GOOD DEMONSTRATING

Watch 2 videos on good and bad demonstrating and take notes...
SOME TIPS AND TRICKS

- Actively identify students who need help
- Listen first! Wait for answers!
- Prompt to check understanding and progress
- Repeat, rephrase, break down questions/ ask students to explain or rephrase
- Use visuals/different material in explanation
- Treat students equally
- Be friendly and approachable (but how much?)
- Try to encourage, motivate and inspire
- It’s never a stupid question!
DOs and DON’Ts of explanations and feedback

As split in pairs, each of you:

- provide a short explanation to your colleague of a method from your tutorials that your colleague is not familiar with
- check for his/her understanding with a simple exercise.
DOs and DON'Ts of explanations and feedback

As split into 2 groups, discuss and write on poster paper what you think are the DO’s and DON’Ts of explanation and feedback

Visit the other group’s poster
EXPLANATIONS- SOME DOs

- Discuss how a question should be interpreted, and what is expected
- Discuss problem solving strategies, and the thought process (the why)
- Provide (motivating!) real-world examples
- Watch faces, or probe for understanding
- Be prepared to repeat, use simple words, explain things in several ways (e.g. text, diagrams, code)
- If you get carried away, remember to stop and ask for contributions
EXPLANATIONS- SOME DON’Ts

- Don’t dominate, and do a mini lecture! Know when to stop, encourage contributions!
- Don’t go too fast!
- Don’t assume prior knowledge!
- Don’t skip steps just because they are “easy”!
- Don’t just provide the solution!
- Don’t be afraid to acknowledge your mistakes, or that you do not know an answer!
Feedback - Some Dos

- Keep a positive, encouraging tone (e.g. ‘you’re almost there’, ‘it’s not that difficult when you try it, you’ll see’)
- If something is incorrect let the student down gently, helping him identify the omission himself through questions; useful to ask class!
- Try to find something positive in everything (e.g. ‘good try’ instead of ‘this is rubbish’)
- Praise students who do well
- Treat students equally

Student mistakes help identify common misconceptions
FEEDBACK- SOME DON’Ts

- Don’t make fun of or put down a student if his/her solution is incorrect!
- Don’t act dismissive, or show frustration!
- Don’t just point to course requirements or material, but try to get the student going!
- Don’t let one or two students use up all your time
RESPONDING TO QUESTIONS

- First check your understanding - ask them to repeat/rephrase question, or rephrase it yourself
- Ask students to talk you through their progress and what could help from material
- Discuss steps and point them to material
- Give out clues to encourage finding solution
- Give enough explanations to get them going
- Examples and using simple words is essential
- Go back to check progress of students who had problems
YOUR ATTITUDE

- **Be friendly and approachable**: students should feel encouraged to ask you questions
- **Express enthusiasm** about the subject
- **Be understanding** if students tell you about their difficulties, relate them to your own
- Take time to chat informally with the students, to see how they are getting on
- **Show empathy to personal problems**, and direct students to their CO or personal tutor
- **Be strict about course requirements and ground rules!**
How can we check if a student needs help?

Brainstorm strategies to check whether a student:

- Has questions
- Has understood your explanation
CHECKING FOR UNDERSTANDING- SOME TIPS AND TRICKS

- Asking “How are you getting on?”/”Do you need help?”/“Any questions?”/“Is this clear?”/”Have you understood?” does not always give true reply
- Students may be confused, too shy to ask, embarrassed, or only understand superficially/think they understand.
- Ask them probing questions
- Use closed questions
- Give them another task to solve to prove their understanding
How can we encourage interaction in tutorials?

In small groups, propose strategies for encouraging interaction, thinking of:

- Non-verbal communication
- Organising the group
ENCOURAGING INTERACTION- SOME TIPS AND TRICKS

- Glance round the group, watch faces and reactions and respond to them by calling people to contribute
- Do not fall into the temptation to give out the answer, but ask for opinion or re-direct
- Ask others for agreement on wrong, but also right ideas
- Do not correct or act judgemental!
- Be personal- call students by name when you refer to them
- Group students
- Use the round robin technique
Dealing with possible challenges in labs and tutorials

- Split into 3 groups:
 - Tutors
 - Demonstrators
 - Tutors and demonstrators
- Depending on your group, draw a challenge card from the bag
- Think of how you would address that challenge individually first, then present and discuss your solution with a colleague
RESOURCES

- Informatics Teaching Support training webpage
- “Tutoring and Demonstrating: a Handbook” chapter 5 (“Demonstrating”) and chapter 4 (“Problem solving classes”)
- “Laboratory demonstrating”, “Tutorial teaching- Problem solving classes” and “Open discussion classes” material on the “IAD Resources on Tutoring and Demonstrating” channel in Learn
- Future IAD courses on tutoring:
 - “Enhancing Tutorials”- Wed 17 Oct