
UG3 Operating Systems: Course Re-design

Michael O’Boyle & Tom Spink

1 Introduction

This document shall describe the proposed changes to be made to the UG3 Operating Systems
(INFR09015) (OS) course, in order to increase its ranking from a 10-credit course to a 20-credit
course. It shall describe proposed additions to content (Section 2), proposed re-design of the practical
coursework (Section 3) and conclude with proposed time and award allocations (Section 4).

2 Course Content

In order to bring OS up to a 20-credit course, it is proposed to increase the number of lecturing hours
from 15 to 20. This will allow the following topics to be introduced or extended:

• Boot Loaders

• Virtualisation

• Security and Privacy

• Symmetric Multiprocessing (and by extension lock-free algorithms)

• Real-time Kernels

3 Coursework Re-design

3.1 Background

The current coursework for Operating Systems is extremely outdated, using an ancient version of the
Linux Kernel as a reference implementation. The coursework itself is based on premises that are no
longer valid, and the infrastructure is beginning to age. Additionally, prior to academic year 14/15, the
coursework involved writing an essay about a particular function of an operating system but this was
not deemed to be very challenging or valuable to the student, and so it was replaced with a new piece
of practical work, in the form of a user-space shell implementation. This piece of coursework helped the
students to re-inforce their knowledge of fundamentals that would be beneficial for the latter (unchanged)
part of the coursework. Unfortunately, this incremental change suffered logistically, because in 14/15,
all the coursework (the shell and the kernel-module) was due to be handed in at the end of the semester,
which means the students did not receive feedback about their user-space shell until the end of the course.
This actually negates any benefit from having this coursework as an introductory piece, as they can’t
advance from any feedback. So, in 15/16 the coursework was split into two separate deadlines, with the
first (end of week 4) being the user-space shell, and the last (end of week 11) being the original kernel
module coursework.

3.2 New Coursework

As the coursework can now be considered to be very outdated, it is therefore proposed to completely
re-design the coursework, in both content and structure.

The new coursework would be for the student to build components of an operating system, and
would be designed to follow the structure of the course content. This would be realised by providing a

1



skeleton operating system to the student (in binary form), with modules that can be added and removed
at compilation time, and a set of headers for students to compile their own modules against. A full
(binary) reference implementation of the operating system would be provided so that the student can
verify the infrastructure works, and it will be up to them to provide their own implementations of certain
components as the tasks for each stage.

3.3 Structure

The coursework would be structured in to three distinct stages, with three separate deadlines:

Stage 1: 15 hours across three weeks (deadline week 4)

Stage 2: 15 hours across three weeks (deadline week 7)

Stage 3: 20 hours across four weeks (deadline week 11)

Total: 50 hours

Each stage could be implemented without predjudice from the other stages, so if a student was unable
to complete previous stages, this would have no bearing on their ability to implement the later stages,
as they can use the binary reference implementations in place of their buggy/incomplete versions.

All stages of the coursework would be provided to the student from the beginning of the course,
giving them the opportunity to start any part of the coursework as early as they wish. It would also be
possible to reorder Stage 2 and Stage 3, to more closely follow the lecture structure.

3.3.1 Stage 1 - Introduction/Fundamentals

Stage 1 of the coursework would be an exploratory phase, where the student is introduced to the
environment they will be working with in the latter two stages. They would be required to set-up the
infrastructure, ensure they can boot a working version of the skeleton operating system, and implement
a small file-system device driver for the operating system to boot a shell, thus ensuring they have the
required fundamentals.

This stage would help the student to reinforce their ability to program in C/C++, which is a trans-
ferable skill and required for the next stages of the coursework.

It is expected that this stage of the coursework would take 15 hours.

3.3.2 Stage 2 - Applied Knowledge

Stage 2 of the coursework would be an implementation phase, where the student is asked to implement
a memory allocator component for the operating system. Without a functional memory allocator, the
skeleton operating system will not boot.

The memory allocation algorithm would be based on what they are currently learning about as part
of the lectures and their own background reading (e.g. a buddy allocator?).

It is expected that this stage of the coursework would take 15 hours.

3.3.3 Stage 3 - Applied Knowledge

Stage 3 of the coursework would be an implementation phase, where the student is asked to implement
a process scheduler component for the operating system. Without a process scheduler, the skeleton
operating system will not be able to run threads/processes.

It is expected that this stage of the coursework would take 20 hours.

3.3.4 Assessment of Stages

These stages would be initially assessed by observing if the system boots as per the reference implemen-
tation, then by examining the student’s code, and providing feedback on their implementation. Simple
test cases for the student should be provided, along with more detailed test cases for the marker.

2



4 Allocations

This section outlines the proposed increase in time and award allocation.

4.1 Temporal

Item Current Proposed Delta
Lectures 15 20 +5
Summative Assessment 2 2 0
Programme Level Learning and Teaching 2 2 0
Directed Learning and Independent Learning 56 126 +70
Coursework 25 50 +25
Total 100 200 +100

4.2 Award

Item Current Proposed Delta
Written Exam 75% 70% -5%
Coursework 25% 30% +5%

Coursework Weight Increase The increase in weighting of the coursework is because the coursework
now significantly contributes to the student’s learning of the internals of operating systems, rather than
being a superficial modification of an existing operating system.

3


	Introduction
	Course Content
	Coursework Re-design
	Background
	New Coursework
	Structure
	Stage 1 - Introduction/Fundamentals
	Stage 2 - Applied Knowledge
	Stage 3 - Applied Knowledge
	Assessment of Stages


	Allocations
	Temporal
	Award


