
1

PROPOSED COURSE TITLE: Informatics 1 – Introduction to Computation

PROPOSER(S): Don Sannella

DATE: 19 Jan 2018, updated 21 Mar 2018

2

SUMMARY

This template contains the following sections, which should be prepared roughly in the order

in which they appear (to avoid spending too much time on preparation of proposals that are

unlikely to be approved):

1. Case for Support
– To be supplied by the proposer and shown to the BoS Academic Secretary prior to preparation of

an in-depth course description

1a. Overall contribution to teaching portfolio

1b. Target audience and expected demand

1c. Relation to existing curriculum

1d. Resources

2. Course descriptor
- This is the official course documentation that will be published if the course is approved, ITO and the

BoS Academic Secretary can assist in its preparation

3. Course materials
- These should be prepared once the Board meeting at which the proposal will be discussed has been

specified

3a. Sample exam question

3b. Sample coursework specification

3c. Sample tutorial/lab sheet question

3d. Any other relevant materials

4. Course management

- This information can be compiled in parallel to the elicitation of comments for section 5.

4a. Course information and publicity

4b. Feedback

4c. Management of teaching delivery

5. Comments

- To be collected by the proposer in good time before the actual BoS meeting and included as

received

5a. Year Organiser Comments

5b. Degree Programme Co-Ordinators

5c. BoS Academic Secretary

[Guidance in square brackets below each item. Please also refer to the guidance for new

course proposals at http://www.inf.ed.ac.uk/student-services/committees/board-of-

studies/course-proposal-guidelines. Examples of previous course proposal submissions are

available on the past meetings page

http://web.inf.ed.ac.uk/infweb/admin/committees/bos/meetings-directory.]

http://www.inf.ed.ac.uk/student-services/committees/board-of-studies/course-proposal-guidelines
http://www.inf.ed.ac.uk/student-services/committees/board-of-studies/course-proposal-guidelines
http://web.inf.ed.ac.uk/infweb/admin/committees/bos/meetings-directory

3

SECTION 1 – CASE FOR SUPPORT

[This section should summarise why the new course is needed, how it fits with the existing

course portfolio, the curricula of our Degree Programmes, and delivery of teaching for the

different years it would affect.]

1a. Overall contribution to teaching portfolio

[Explain what motivates the course proposal, e.g. an emergent or maturing research area, a

previous course having become outdated or inappropriate in other ways, novel research

activity or newly acquired expertise in the School, offerings of our competitors.]

1b. Target audience and expected demand

[Describe the type of student the course would appeal to in terms of background, level of

ability, and interests, and the expected class size for the course based on anticipated

demand. A good justification would include some evidence, e.g. by referring to projects in an

area, class sizes in similar courses, employer demand for the skills taught in the course, etc.]

This proposal is the outcome of discussions in the Curriculum Review Committee. The motivation is

to rationalise Informatics teaching in the first semester of first year, combining the two existing 10-

point courses (Inf1-FP and Inf1-CL) into a single 20-point course.

By taking advantage of relationships between existing material on Functional Programming and on

Computation and Logic, and by trimming some material from Inf1-CL, we can present the existing

material in a more unified way and free up space for more material on algorithms and on

“computational thinking”.

Taking advantage of the fact that some of the more advanced material in Inf1-FP is not currently

examinable, we can provide a version of the course that replaces this material with introductory

material on imperative programming, bringing students who have no previous programming

experience up to speed for Inf1-OP in second semester and enabling that course to be taught to a

more uniform group of students.

This course would be compulsory for all Informatics students and would be accessible to students

from outside Informatics, with no prerequisites. The expected class size would be the same as for

the current Inf1-FP and Inf1-CL.

4

1c. Relation to existing curriculum

[This section should describe how the proposed course relates to existing courses,

programmes, years of study, and specialisms. Every new course should make an important

contribution to the delivery of our Degree Programmes, which are described at

http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm.

 Please name the Programmes the course will contribute to, and justify its contribution in

relation to courses already available within those programmes. For courses available to MSc

students, describe which specialism(s) the course should be listed under (see

http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-

guide/specialist-areas), and what its significance for the specialism would be. Comment on

the fit of the proposed course with the structure of academic years for which it should be

offered. This is described in the Year Guides linked from

http://web.inf.ed.ac.uk/infweb/student-services/ito/students.]

1d. Resources

[While course approvals do not anticipate the School's decision that a course will actually be

taught in any given year, it is important to describe what resources would be required if it

were run. Please describe how much lecturing, tutoring, exam preparation and marking effort

will be required in steady state, and any additional resources that will be required to set the

course up for the first time. Please make sure that you provide estimates relative to class

size if there are natural limits to its scalability (e.g. due to equipment or space requirements).

Describe the profile of the course team, including lecturer, tutors, markers, and their required

background. Where possible, identify a set of specific lecturers who have confirmed that they

would either like to teach this course apart from the proposer, or who could teach the course

in principle. It is useful to include ideas and suggestions for potential teaching duty re-

allocation (e.g. through course sharing, discontinuation of an existing course, voluntary

teaching over and above normal teaching duties) to be taken into account when resourcing

decisions are made.]

The proposed course would replace Inf1-FP and Inf1-CL. The material required by subsequent

courses would be preserved. Introductory material on imperative programming would be provided

in order to prepare students with no previous programming background for Inf1-OP. It is likely that

material from the beginning of Inf1-OP can be adapted for use here, freeing up time in Inf1-OP for

more advanced material and/or for more consolidation of the material that is taught.

The resources required would be about the same as the resources currently required by Inf1-FP and

Inf1-CL: four hours of lectures per week, two hours of tutorials/exercise sessions per week, labs

with demonstrators to provide assistance to students working on exercises. The examination would

include both an on-line programming component and a pen-and-paper component.

Additional resources required are six lectures on introductory imperative programming and

accompanying unassessed exercises.

http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm
http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-guide/specialist-areas
http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-guide/specialist-areas

5

SECTION 2 – COURSE DESCRIPTOR

[This is the official course descriptor that will be published by the University and serves as

the authoritative source of information about the course for student via DRPS and PATH.

Current course descriptions in the EUCLID Course Catalogue are available at

www.euclid.ed.ac.uk under ‘DPTs and Courses’, searching for courses beginning ‘INFR’]

2a. Course Title [Name of the course.]:

2b. SCQF Credit Points:

[The Scottish Credit and Qualifications Framework specifies where each training component

provided by educational institutions fits into the national education system. Credit points per

course are normally 10 or 20, and a student normally enrols for 60 credits per semester. For

those familiar with the ECTS system, one ECTS credit is equivalent to 2 SCQF credits. See

also http://www.scqf.org.uk/The%20Framework/Credit%20Points.]

SCQF Credit Level:

[These levels correspond to different levels of skills and outcomes, see

http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf At University level, Year 1/2

courses are normally level 8, Year 3 can be level 9 or 10, Year 4 10 or 11, and Year 5/MSc

have to be level 11. MSc programmes may permit a small number (up to 30 credits overall)

of level 9 or 10 courses.]

Normal Year Taken: 1/2/3/4/5/MSc

[While a course may be available for more than one year, this should specify when it is

normally taken by a student. “5” here indicates the fifth year of undergraduate Masters

programmes such as MInf.]

Also available in years: 1/2/3/4/5/MSc

Different options are possible depending on the choice of SCQF Credit Level above: for level

9, you should specify if the course is for 3rd year undergraduates only, or also open to MSc

students (default); for level 10, you should specify if the course is available to 3rd year and 4th

year undergraduates (default), 4th year undergraduates only, and whether it should be open

to MSc students; for level 11, a course can be available to 4th and 5th year undergraduates

and MSc students (default), to 5th year undergraduates and MSc students, or to MSc

students only]

Informatics 1 – Introduction to Computation

20

8

1

http://www.scqf.org.uk/The%20Framework/Credit%20Points
http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf.

6

2c. Subject Area and Specialism Classification:

[Any combination of Computer Science, Artificial Intelligence, Software Engineering and/or

Cognitive Science as appropriate. For courses available to MSc students, please also

specify the relevant MSc specialist area (to be found in the online MSc Year Guide at

http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-

guide/specialist-areas), distinguishing between whether the course should be considered as

“core” or “optional” for the respective specialist area.]

Appropriate/Important for the Following Degree Programmes:

[Please check against programmes from http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm to

determine any specific programmes for which the course would be relevant (in many cases,

information about the Subject Area classification above will be sufficient and specific

programmes do not have to be specified). Some courses may be specifically designed for

non-Informatics students or with students with a specific profile as a potential audience,

please describe this here if appropriate.]

Timetabling Information:

[Provide details on the semester the course should be offered in, specifying any timetabling

constraints to be considered (e.g. overlap of popular combinations, other specialism

courses, external courses etc).]

Computer Science, Artificial Intelligence, Software Engineering, Cognitive Science

All undergraduate Informatics degree programmes

Semester 1

http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-guide/specialist-areas
http://web.inf.ed.ac.uk/infweb/student-services/ito/students/taught-msc-2015/programme-guide/specialist-areas
http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm

7

2d. Summary Course Description:

[Provide a brief official description of the course, around 100 words. This should be worded

in a student-friendly way, it is the part of the descriptor a student is most likely to read.]

Course Description:

[Provide an academic description, an outline of the content covered by the course and a

description of the learning experience students can expect to get. See guidance notes at:

http://www.studentsystems.is.ed.ac.uk/staff/Support/User_Guides/CCAM/CCAM_Information

_Captured.html

Pre-Requisite Courses:

[Specify any courses that a student must have taken to be permitted to take this course. Pre-

requisites listed in this section can only be waived by special permission from the School's

Curriculum Approval Officer, so they should be treated as "must-have". By default, you may

assume that any student who will register for the course has taken those courses

compulsory for the degree for which the course is listed in previous years. Please include the

FULL course name and course code].

Co-Requisite Courses:

[Specify any courses that should be taken in parallel with the existing course. Note that this

leads to a timetabling constraint that should be mentioned elsewhere in the proposal. Please

include the FULL course name and course code].

Prohibited Combinations:

An introduction to concepts of programming, using a functional programming language, and to

concepts of computation and specification using finite-state systems and propositional logic.

These provide examples of the logical ideas of syntax and semantics and the computational ideas

of structure and behaviour. Students learn to specify, model and solve small-scale problems

succinctly and at an abstract level.

An introduction to concepts of programming, using the Haskell functional programming language,

and to concepts of computation and specification, using finite-state machines and propositional

logic. The use of sets, functions and relations to describe models of logic and computation.

Programming using functions and data structures including lists and trees; case analysis, recursion

and higher-order functions. Finite-state machines as a basic model of computation: deterministic

and non-deterministic automata; regular expressions; acceptors; structured design of finite state

machines. Propositional logic: truth tables; satisfiability; deduction. Applications from different

areas will be used to illustrate and motivate the material.

http://www.studentsystems.is.ed.ac.uk/staff/Support/User_Guides/CCAM/CCAM_Information_Captured.html
http://www.studentsystems.is.ed.ac.uk/staff/Support/User_Guides/CCAM/CCAM_Information_Captured.html

8

[Specify any courses that should not be taken in combination with the proposed course.

Please include the FULL course name and course code].

Other Requirements:

[Please list any further background students should have, including, for example,

mathematical skills, programming ability, experimentation/lab experience, etc. It is important

to consider that unless there are formal prerequisites for participation in a course, other

Schools can register their students onto our courses, so it is important to be clear in this

section. If you want to only permit this by special permission, a statement like "Successful

completion of Year X of an Informatics Single or Combined Honours Degree, or equivalent

by permission of the School." can be included.]

Available to Visiting Students: Yes/No

[Provide a justification if the answer is No.]

SCE H-grade Mathematics or equivalent is desirable.

Yes

9

2e. Summary of Intended Learning Outcomes (MAXIMUM OF 5):

[List the learning outcomes of the course, emphasising what the impact of the course will be

on an individual who successfully completes it, rather than the activity that will lead to this

outcome. Further guidance is available from

https://canvas.instructure.com/courses/801386/files/24062695]

Assessment Information

[Provide a description of all types of assessment that will be used in the course (e.g. written

exam, oral presentation, essay, programming practical, etc) and how each of them will

assess the intended learning outcomes listed above. Where coursework involves group

work, it is important to remember that every student has to be assessed individually for their

contribution to any jointly produced piece of work. Please include any minimum requirements

for assessment components e.g. student must pass all individual pieces of assessment as

well as course overall].

On completion of this course, the student will be able to:

1. Use sets, functions and relations to create a simple mathematical model of a real-

world situation and use the syntax and semantics of propositional logic to express

simple constraints.

2. Solve simple programming tasks and define appropriate data types. Choose

appropriate decompositions of given problems and compose corresponding

functional programs from suitable function definitions, including their types.

3. Read and write programs that use basic list processing functions, list

comprehensions, case analysis, recursion, and higher-order functions. Understand

algorithms for searching and sorting. Document, test and debug programs.

4. Formalise simple propositional reasoning using various methods, including truth

tables.

5. Design finite state acceptors for particular languages. Use regular expressions to

search for simple patterns. Understand the relationship between finite state

acceptors and regular expressions.

A practical final exam will assess programming in Haskell. A mid-semester written class exam will

assess progress towards learning to program in Haskell. A written final exam will assess

understanding of propositional logic and finite state machines. Students’ solutions to weekly

unassessed formative exercises will be discussed in tutorial groups.

The material on advanced functional programming in Haskell and on introductory imperative

programming will not be assessed. The latter material will be covered by unassessed formative

exercises.

The marks from the practical and written final exams will be combined to give a single exam

mark. Students are required to achieve a passing mark for the course as a whole; there is no

requirement that they separately pass one or both of the exams.

https://canvas.instructure.com/courses/801386/files/24062695

10

Assessment Weightings:

 Examinations: 95%

 Coursework: 5%

Time spend on assignments:

[Weightings up to a 70/30 split between exam and coursework are considered standard, any

higher coursework percentage requires a specific justification. The general expectation is

that a 10-point course will have an 80/20 split and include the equivalent of one 20-hour

coursework assignment (although this can be split into several smaller pieces of coursework.

The Practical Examination category should be used for courses with programming exams.

You should not expect that during term time a student will have more than 2-4 hours to

spend on a single assignment for a course per week. Please note that it is possible, and in

many cases desirable, to include formative assignments which are not formally assessed but

submitted for feedback, often in combination with peer assessment.]

Academic description:

[A more technical summary of the course aims and contents. May include terminology and

technical content that might be more relevant to colleagues and administrators than to

students.]

Syllabus:

[Provide a more detailed description of the contents of the course, e.g. a list of bullet points

roughly corresponding to the topics covered in each individual lecture/tutorial/coursework.

The description should not exceed 500 words but should be detailed enough to allow a

As in Inf1-FP and Inf1-CL.

Functional programming is appropriate for a first university course on programming because it

requires students to think about programming at a high level, allowing the emphasis to be put

mainly on understanding fundamental concepts rather than mainly on coming to grips with

programming language syntax and idiosyncrasies. Also, it puts students who have no

programming experience on the same level as students with a great deal of programming

experience, addressing the diversity of our intake. Simple set theory, finite-state machines and

propositional logic are essential foundations for modelling and specifying problems and

computations. Teaching these topics together with functional programming allows us to address

all aspects of simple computational problem solving – modelling, specification, programming – in

a single course, and to tie the topics in the course together by (for example) writing programs

that manipulate propositional formulae.

11

student to have a good idea of what material will be covered in the course. Please keep in

mind that this needs to be flexible enough to allow for minor changes from year to year

without requiring new course approval each time.]

 Set theory

 Functions and lists

 List comprehensions

 Recursion on lists

 Properties of functions

 Recursion on natural numbers; zip, infinite lists

 Select, take, drop, as applications of zip

 Higher-order functions: map, filter, fold

 Lambda expressions, sections, binding

 Algebraic data types

 Algebraic data types and expression trees

 Expression trees, Maybe type, union of types

 Introduction to big-O notation, efficiency of different representations of sets

 Binary search trees, balanced trees (AVL trees)

 Search in trees: breadth-first search, depth-first search, backtracking

 Sorting lists, divide and conquer

 Representation invariant, data abstraction

 Logical connectives, truth tables

 Tautology, satisfiable, contradiction, connection with circuits of switches, conversion to
CNF

 Proof using deduction rules

 States, state transition function, deterministic vs non-deterministic

 Deterministic FSMs more formally, acceptors

 Language accepted by an FSM, regular languages, non-deterministic FSMs

 Regular expressions, converting FSMs to regular expressions

 Converting regular expressions to FSMs, regular expressions for search

During the final three weeks of the course, 6 lectures per week will be offered rather than the
usual 4 lectures per week. Two of these will be compulsory. Two of the remaining 4 lectures will
cover advanced topics in functional programming, for instance:

 Type classes

 IO and commands, do-notation, bind operator

 Monads, connection between list monad and list comprehension, applications

 Connections between logic and lambda calculus / functional programming
The other two of the remaining 4 lectures will cover introductory imperative programming, for
instance:

 Objects, fields, methods

 Assignment, conditional, loops
Students will self-select between these streams according to previous programming experience
and confidence; students who have no previous programming experience and who plan to take
Inf1-OP will be advised to take the latter stream.

12

Relevant QAA Computing Curriculum Sections:

[Please see http://www.qaa.ac.uk/en/Publications/Documents/SBS-Computing-consultation-

15.pdf to check which section the course fits into.]

Graduate Attributes, Personal and Professional skills:

[This field should be used to describe the contribution made to the development of a

student’s personal and professional attributes and skills as a result of studying this course –

i.e. the generic and transferable skills beyond the subject of study itself. Reference in

particular should be made to SCQF learning characteristics at the correct level

http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf].

Reading List:

[Provide a list of relevant readings. See also remarks under 3d.]

Breakdown of Learning and Teaching Activities:

[Total number of lecture hours and tutorial hours, with hours for coursework assignments.]

 [The breakdown of learning and teaching activities should only include contact hours with

the students; everything else should be accounted for in the Directed Learning and

Independent Learning hours.

 The total being 10 x course credits. Assume 10 weeks of lectures slots and 10 weeks of

tutorials, though not all of these need to be filled with actual contact hours. As a guideline, if

a 10-pt course has 20 lecture slots in principle, around 15 of these should be filled with

examinable material; the rest should be used for guest lectures, revision sessions,

introductions to assignments, etc. Additional categories of learning and teaching activities

are available, a full list can be found at:

http://www.euclid.ed.ac.uk/Staff/Support/User_Guides/CCAM/Teaching_Learning.htm]

 Lecture Hours: 40 hours

 Seminar/Tutorial Hours: 20 hours

 Supervise practical/Workshop/Studio hours: 20 hours

[As Inf1-FP and Inf1-CL.]

[As Inf1-FP and Inf1-CL, plus teamwork, fostered through some use of pair programming.]

http://www.qaa.ac.uk/en/Publications/Documents/SBS-Computing-consultation-15.pdf
http://www.qaa.ac.uk/en/Publications/Documents/SBS-Computing-consultation-15.pdf
http://www.sqa.org.uk/files_ccc/SCQF-LevelDescriptors.pdf
http://www.euclid.ed.ac.uk/Staff/Support/User_Guides/CCAM/Teaching_Learning.htm

13

 Summative assessment hours: 5 hours

 Feedback/Feedforward hours: 4 hours

 Directed Learning and Independent Learning hours: 111 hours

 Total hours: 200 hours

You may also find the guidance on ‘Total Contact Teaching Hours’ and ‘Examination &

Assessment Information’ at:

http://www.studentsystems.ed.ac.uk/Staff/Support/User_Guides/CCAM/CCAM_Information_

Captured.html

Keywords:

[A list of searchable keywords.]

SECTION 3 - COURSE MATERIALS

3a. Sample exam question(s)

[Sample exam questions with model answers to the individual questions are required for new

courses. A justification of the exam format should be provided where the suggested format

non-standard. The online list of past exam papers gives an idea of what exam formats are

most commonly used and which alternative formats have been

http://www.inf.ed.ac.uk/teaching/exam_papers/.]

[As Inf1-FP and Inf1-CL.]

See past Inf1-FP and Inf1-CL exam papers.

http://www.studentsystems.ed.ac.uk/Staff/Support/User_Guides/CCAM/CCAM_Information_Captured.html
http://www.studentsystems.ed.ac.uk/Staff/Support/User_Guides/CCAM/CCAM_Information_Captured.html
http://www.inf.ed.ac.uk/teaching/exam_papers/

14

3b. Sample coursework specification

[Provide a description of a possible assignment with an estimate of effort against each sub-

task and a description of marking criteria.]

3c. Sample tutorial/lab sheet questions

[Provide a list of tutorial questions and answers and/or samples of lab sheets.]

3d. Any other relevant materials

[Include anything else that is relevant, possibly in the form of links. If you do not want to

specify a set of concrete readings for the official course descriptor, please list examples

here.]

See past Inf1-FP class test papers.

See past Inf1-FP and Inf1-CL tutorial exercises.

15

SECTION 4 - COURSE MANAGEMENT

4a. Course information and publicity

[Describe what information will be provided at the start of the academic year in which format,

how and where the course will be advertised, what materials will be made available online

and when they will be finalised. Please note that University and School policies require that

all course information is available at the start of the academic year including all teaching

materials and lecture slides.]

4b. Feedback

[Provide details on feedback arrangements for the course. This includes when and how

course feedback is solicited from the class and responded to, what feedback will be provided

on assessment (coursework and exams) within what timeframe, and what opportunities

students will be given to respond to feedback.

The University is committed to a baseline of principles regarding feedback that we have to

implement at every level, these are described at

http://www.docs.sasg.ed.ac.uk/AcademicServices/Policies/Feedback_Standards_Guiding_P

rinciples.pdf.

Further guidance is available from http://www.enhancingfeedback.ed.ac.uk/staff.html.]

[As Inf1-FP and Inf1-CL.]

[As Inf1-FP and Inf1-CL.]

http://www.docs.sasg.ed.ac.uk/AcademicServices/Policies/Feedback_Standards_Guiding_Principles.pdf
http://www.docs.sasg.ed.ac.uk/AcademicServices/Policies/Feedback_Standards_Guiding_Principles.pdf
http://www.enhancingfeedback.ed.ac.uk/staff.html

16

4c. Management of teaching delivery

[Provide details on responsibilities of each course staff member, how the lecturer will recruit,

train, and supervise other course staff, what forms of communication with the class will be

used, how required equipment will be procured and maintained. Include information about

what support will be required for this from other parties, e.g. colleagues or the Informatics

Teaching Organisation.]

[As Inf1-FP and Inf1-CL.]

17

SECTION 5 - COMMENTS

 [This section summarises comments received from relevant individuals prior to proposing

the course. If you have not discussed this proposal with others please note this].

5a. Year Organiser Comments

[Year Organisers are responsible for maintaining the official Year Guides for every year of

study, which, among other things, provide guidance on available course choices and

specialist areas. The Year Organisers of all years for which the course will be offered should

be consulted on the appropriateness and relevance on the course. Issues to consider here

include balance of course offerings across semesters, subject areas, and credit levels,

timetabling implications, fit into the administrative structures used in delivering that year.]

18

5b. BoS Academic Secretary

[Any proposal has to be checked by the Secretary of the Board of Studies prior to discussion

at the actual Board meeting. This is a placeholder for their comments, mainly on the formal

quality of the content provided above.]

