A Proposal for Informatics 1B

Paul Anderson <dcspaul@ed.ac.uk>
Volker Seeker <volker.seeker@ed.ac.uk>
School of Informatics

University of Edinburgh

(1] Background

INF1B is a new 20 point course intended to replace
the existing Inf1-OP' and Inf1-DA? courses (10 points
each).

The main motivation is to provide more time and ef-
fort to help students to acquire a reasonable level of
practical programming ability:

e The material from the existing Infl-DA course
will largely be deferred to later years.

e An introduction to practical imperative program-
ming will be included at the end of INF1A for
those students with no prior experience. This will
allow INF1B to assume some initial (imperative)
programming knowledge from all students.

The previous version (1) of this discussion document
presented some initial thoughts on a possible approach
to the course. This version is an attempt to provide
more detail, and to address some of the issues raised
by the feedback to the first draft (see [appendix B]).
Some details remain to be decided, but we believe that
this represents a workable proposal.

2] Motivation

Informally we would like to:

e Focus on practical programming skills and in-
crease the students’ ability and confidence in pro-
ducing realistic, practical applications.

e Foster an awareness of good engineering practice
in an informal way - including, version control,
testing, and documentation.

e Provide a course which is stimulating and chal-
lenging for those with more experience, at the
same time as being accessible to those with less.

e Encourage student interaction and collaborative
development of larger applications, and show how
an object-oriented approach can facilitate this.

e Provide the practical motivation for a more formal
approach to the topics studied in later years.

"https://www.inf.ed.ac.uk/teaching/courses/
infl/op/
’https://blog.inf.ed.ac.uk/dal8/

Note that student engagement has historically been a
problem in Infl-OP. This proposal aims to incorpo-
rate several best practices for improving engagement
and encouraging under-represented students®, in par-
ticular: collaborative learning and student interaction,
opportunities for self-reflection, and offering a range
of options.

3] Learning Outcomes

We propose the following outcomes:

e Implement components of an object-oriented pro-
gram, given a specification, and demonstrate the
use of an object-oriented approach to enable
group development of larger applications.

o Justify implementation decisions, compare imple-
mentations, and comment on their strengths and
weaknesses.

e Demonstrate an awareness of good software engi-
neering practice, including the use of version con-
trol, testing and readable code.

e Locate and use additional sources of information
(to include discussion with peers where appro-
priate) to facilitate independent problem-solving,
and reflect on one’s own and others’ contribution
to a collaborative learning environment.

e Plan and organize time, working consistently to a
goal.

Note that we do not expect the students to make signif-
icant decisions about the overall application design at
this stage.

4| Proposed Format

We propose taking an “Objects First”* approach to the
course material by starting with object-oriented con-
cepts and gradually introducing the features of the Java
language in this context. We would like to take ad-
vantage of the students’ previous experience of func-
tional programming by comparing and contrasting the
two approaches.

In practical terms, we would provide a realistic frame-
work of pre-written objects which the students could

3https://www.engage-csedu.org/,
https://www.ncwit.org/resources/

top-1l0-ways-engage-underrepresented-students-computing/

top-10-ways—engage—-underrepresented

4Objects First with Java: A Practical Introduction using BlueJ,
David J. Barnes & Michael Kolling.
http://www.bluej.org/objects—first/.

Revision: 2.3

Thursday, 8 November 2018


https://www.inf.ed.ac.uk/teaching/courses/inf1/op/
https://www.inf.ed.ac.uk/teaching/courses/inf1/op/
https://blog.inf.ed.ac.uk/da18/
https://www.engage-csedu.org/
https://www.ncwit.org/resources/top-10-ways-engage-underrepresented-students-computing/top-10-ways-engage-underrepresented
https://www.ncwit.org/resources/top-10-ways-engage-underrepresented-students-computing/top-10-ways-engage-underrepresented
https://www.ncwit.org/resources/top-10-ways-engage-underrepresented-students-computing/top-10-ways-engage-underrepresented
http://www.bluej.org/objects-first/

A Proposal for Informatics 1B

@)

initially connect and modify in small ways, and later
augment by writing their own classes from scratch.
This framework would provide the background to the
entire course.

We intend to choose a suitably flexible application that
the same framework could be reused in subsequent
years by adding new classes to provide additional func-
tionality. It is also possible to envisage the classes be-
ing chosen to highlight various areas of the curriculum
- for example databases, graphics, algorithms, natural
language, etc.

Appendix A shows a sketch of one possible idea for
such a framework.

4.1 Groups

We propose asking the students to work in small
groups (probably of three or four), with each student in
the group responsible for a different class (or a small
set of classes). The classes could then be combined to
produce a group implementation of a realistic applica-
tion. Each group would have the same set of classes,
and the interface specifications would be given in ad-
vance. This would allow implementations to be com-
pared and exchanged between groups.

The group setting is intended to keep student engage-
ment high, and to help them recognise the value in
working together. We would encourage this by re-
quiring the use of a shared version control system,
for example. However, we would not expect them
all to be sufficiently mature at this stage to negoti-
ate responsibilities and manage interactions. Students
in the group would therefore be allocated their own
components which they would be expected to develop
independently. Substitute components could be “im-
ported” from another group to accommodate students
who failed to produce a working implementation.

4.2 Assessment

We do not believe that the practical programming ob-
jectives of this course can be meaningfully assessed by
examination, and we propose that the assessment be
based entirely on the coursework. We anticipate some-
thing similar to the following:

o A series of small weekly formative exercises, sim-
ilar to the current Inf1-OP lab exercises.

e One exercise each week to be submitted for sum-
mative assessment (10 in total, using CodeRun-
ner or similar). Passing the course to require a
minimum number of these to be submitted (70%).
Examples of students’ submitted code will also
be used for formative feedback on style and effi-
ciency during tutorials (§4.3).

e A first, formative assignment requiring the sub-
mission of code for a component of the frame-
work, and a group demonstration of the running
code to a tutor.

e A second, summative assignment also requiring
the submission of code for a component of the
framework, and a group demonstration of the run-
ning code to a tutor.

e A final 2-3 page document produced by each in-
dividual student which describes their implemen-
tation decisions and reflectively compares their
code with solutions from other groups, and their
experience of working within the group.

To pass the course, students would be expected to (a)
submit the minimum number of weekly exercises, (b)
produce a minimally working implementation for the
second assignment which is reasonably well-structured
and readable, and (c) to provide a meaningful written
discussion of their implementation, and experiences.

Marking: We anticipate using a comparatively
coarse-grained, criteria-based marking scheme similar
to that used for undergraduate projects. The criteria
would include:

e Completion of weekly exercises - assessed auto-
matically.

e Sophistication of the assignment implementation
- assessed from the demonstration.

e Readability and structure of the code - assessed
from a brief scan of the submitted code.

e Awareness of alternative approaches - assessed
from the final document.

e Reflection on group work - assessed from the final
document.

Both the varied levels of possible implementations, and
the final discussion document provide scope for excep-
tional students to be awarded high marks in accordance
with the common marking scheme. However, it should
be possible for students with little previous experience
to meet the minimum requirements.

Academic Misconduct: We are aware that an as-
sessment based entirely on coursework is more suscep-
tible to academic misconduct. There is a real concern
that some students will struggle or fail to engage, and
may be tempted to submit work which is not entirely
their own. In order to mitigate this, we will:

e Run MOSS similarity detection software’ all on
submitted code.

e Require students to explain their code and answer
questions during the demonstration.

Shttps://theory.stanford.edu/~aiken/moss/

Paul Anderson, Volker Seeker


https://theory.stanford.edu/~aiken/moss/

3

Note however, that the ability to locate and evaluate
relevant resources (including libraries, discussions of
bugs, and appropriate code samples, etc.) is an essen-
tial skill in developing any real software. So is the abil-
ity to discuss approaches and potential solutions with
others. These are essential attributes which we would
like to encourage - they only become “plagiarism” and
“collusion” respectively when they are done in such a
way as to misrepresent the origin of the work.

Resits: The groupwork components of the assess-
ment would be difficult to replicate exactly for a re-
sit, and may require some alternative exercise such as
a written discussion of a hypothetical situation. The
comparison of alternative approaches may also need to
be based on different components.

4.3 Activities

The most effective combination of activities is not yet
clear. Traditional lectures would be probably be used
to present material, possibly in combination with some
“live programming” and/or “flipped” sessions. Tutori-
als and/or lab sessions would be used to discuss student
work, provide advice on the assignments and give for-
mative feedback. Students would be expected to sub-
mit the (required) exercises before the tutorials, so that
sample solutions could be discussed.

5] Resources

We do not expect the total resource requirements for
the 20 point course to be more than twice those for the
existing 10 point course. The exact details depends on
the final choice of activities. However:

e 400 students implies a minimum of 26 tutorials
(15 students).

e Around 130 groups of 3-4 students would be
required for the demonstrations. We anticipate
these normally being handled by the tutors, which
would require an additional 3 hours per group -
this includes about 20 mins per demo, 4-5 groups,
and some time to provide written feedback.

e The marking is estimated to require about 200
hours to scan the code and read the final reports
- allowing about 20-30 minutes per student, and
additional time for moderation and training.

e Additional TA and lecturer resource will be re-
quired for development.

We are slightly concerned about the ability to find the
necessary number of qualified TAs/demonstrators/tu-
tors/markers, and the training necessary to maintain a
consistent standard.

6] Issues Raised

Appendix B shows the detailed feedback received
on the previous draft of this paper. In gen-
eral, there was broad support for the proposed ap-
proach[1,3,7,28,30,34]. This section discusses some
of the issues raised:

6.1 Learning Outcomes

There appears to be general agreement on the content
and learning outcomes, although there was some dis-
cussion of whether we should expect all students to be
able to program. The level of programming required at
this stage is extremely basic, and we believe that it is
reasonable to expect students with a degree from Infor-
matics to have achieved this minimum level.

There is also broad support for including wider topics
such as version control and documentation [33]. How-
ever the students will not be expected to design their
own class structures, and we do not think that formal
tools such as UML [5] would be appropriate at this
stage.

6.2 Groupwork

The potential for groupwork to enable the creation of
larger and more interesting applications was recog-
nised [4]. There was some concern that the group-
work would be challenging to organise [16], that first-
year students may not be mature enough to manage
this type of work [43], and that there would be prob-
lems if some group members disengaged [19,22]. We
have attempted to clarify the type of group work which
we had envisaged (§4.1), and we believe that this ad-
dresses these concerns.

There are still some open questions about how the
groups are selected [26] and supported [16], but we
do not believe that these are particularly problem-
atic - except perhaps for resourcing (§6.3). Similarly,
there were some concerns about the ability to design
a framework with sufficiently clear interfaces [18], but
we are reasonably confident that this is not a significant
problem, and appendix A shows a possible example.

6.3 Assessment

The proposed assessment appears to be the most con-
tentious aspect of the proposal. This received some
positive [2,31] and some negative [8,37] feedback. The
alternative proposals mostly involve some (often large)
proportion of exam-based assessment[15,24], but we
strongly believe that the learning outcomes of the
course cannot be meaningfully assessed in this way.
Having a non-assessed course has been suggested as an
alternative [14] - this is a possibility (if the regulations

Revision: 2.3

Thursday, 8 November 2018



A Proposal for Informatics 1B

(4)

permit), although we would be concerned that students
may prioritise their assessed courses over this.

Academic misconduct: The possible opportuni-
ties for academic misconduct are clearly a con-
cern[13]. This includes both plagiarism and collu-
sion [10], as well as “commissioning” work from else-
where [11]. There is a genuine concern that students
will be able to pass the course without having acquired
the programming skills which are necessary for the fol-
lowing years, and which such a result might be ex-
pected to imply [12]. It has also been noted that as-
sessed coursework can inhibit exactly the kind of dis-
cussion and collaboration which we are trying to fos-
ter [9,39].

A traditional exam-based assessment is the most robust
way of avoiding such academic misconduct, but we do
not believe that this is appropriate for the skills that we
would like the students to learn. We believe that the
proposed approach is a reasonable compromise, and
we have attempted to mitigate the possibilities for mis-
conduct as far as possible (§4.2).

Automarking: Several comments [6,29] suggested
that there may be more scope for automarking than
admitted in the proposal. While this is undoubtedly
useful, especially as an initial guide for a marker, we
do not think that this is a panacea: it does not address
the non-functional aspects of the code (structure and
readability, for example); it is difficult to construct and
maintain for non-trivial applications (graphical inter-
faces, for example), and it does not confirm the stu-
dent’s understanding of the material - for example code
which performs a linear search on a HashMap to locate
the value corresponding to a given key!°.

Marking: There appears to be some support for
the coarse-grained criteria-based marking scheme [36],
and no other alternatives have been proposed.

Resits: It seems likely that it will be difficult to repli-
cate the main assessment exactly for resits [25,41]. It
will require some thought to design an acceptable al-
ternative.

Resources: Running such a large course, and de-
veloping new and innovative course materials from
scratch is challenging. Resourcing is major concern -
including development and maintenance of the frame-
work [21], and marking [38].

One suggestion is to allow students to gain an exemp-
tion from the course by passing a test at the end of the
first semester [42]. This would reduce the course num-
bers, and potentially provide a pool of student men-
tors/tutors. However, we are a little sceptical that it is

6 A real example from IJP.

possible to effectively assess the necessary attributes in
this way, and that there would be a sufficient number of
students who would not benefit at all from the course.

We would expect the course to make heavy use of
student demonstrators in the same way as existing
courses, and this could be extended to other years [35].
However, the availability of qualified TAs and markers
is a problem for existing courses, and we would like
to explore ways of making more less-casual resources
available.

Range of experience: The range of experience of
the students on this course is extremely wide, and this
is something which has presented a challenge in the
past[17]. The proposed framework is intended to be
flexible enough to support a wide range of tasks, from
simple components for beginners, to more interesting
and challenging components for those with more pro-
gramming experience [32]. We hope that this will mo-
tivate students at all levels by allowing them contribute
according to their experience.

Further investigation: It has been suggested that
we might undertake some further investigation into
similar courses elsewhere [44] to see how the proposed
approach compares. this would clearly be interesting,
but is not feasible within the timescales if the pro-
posal is to be implemented for next year. However,
there is some evidence that the more collaborative ap-
proach that we are proposing is effective in engaging
students’.

Thttps://www.engage-csedu.org/,
https://www.ncwit.org/resources/

top-10-ways-engage-underrepresented-students-computing/

top-10-ways—engage—-underrepresented

Paul Anderson, Volker Seeker


https://www.engage-csedu.org/
https://www.ncwit.org/resources/top-10-ways-engage-underrepresented-students-computing/top-10-ways-engage-underrepresented
https://www.ncwit.org/resources/top-10-ways-engage-underrepresented-students-computing/top-10-ways-engage-underrepresented
https://www.ncwit.org/resources/top-10-ways-engage-underrepresented-students-computing/top-10-ways-engage-underrepresented

(5

- An Example

Appendix A

The following example shows three individual compo-
nents which might work together as part of a frame-
work but do not strictly rely on each other®. Each
module has one simple and one or more advanced im-
plementations. The students must complete the sim-
ple implementation at the very least, in groups of three
(each student in the group implements a different com-
ponent). If they are able, and have enough time, they
move on to the advanced implementations of their
modules.

In practice, we would expect to offer an application
with considerably more challenging options than this
simple illustration”.

Cat and Mouse

A playing field is provided where actors can be moved
with keyboard input or via Al behaviour models. Three
modules are present, a cat, multiple mice and a dog.

1st Module - the Cat:
e Implement the cat’s movement with arrow keys
(simple).
e Implement eating mice and getting score (simple).

e Implement linear or exponential acceleration for
the cat’s movement (advanced).

e Implement an Al which automatically catches
mice (advanced).
2nd Module - the Mice:

e Implement random mouse movement (simple).

e When the cat gets into the vicinity of the mouse,
it turns around and runs in the opposite direction
(bit faster maybe, only for 2 seconds maybe, not
faster than the cat’s max speed) (advanced).

e Add random spawning of new mice with different
movement patterns (advanced).

3rd Module - the Dog:
e Implement the dog’s basic movement (bouncing
off walls and constant speed) (simple).
e When touching the cat, the game is lost (simple).

e Similar to the mice when in the vicinity of the
cat, the dog follows the cat until it is too far away
again (bit faster, for a few seconds) (advanced).

Going Beyond: Some suggestions in case students
finish all of this and want to do even more:

8This may be implemented using a system system such as Green-
foot (https://www.greenfoot.org/)

9This IJP exercise shows a more complex example:
https://groups.inf.ed.ac.uk/ijp/2018/public/
assignmentl/assignment.html

e Add special collectables such as milk which gives
the cat a speed or score boost for 10 seconds.

e Change the graphics of an actor by implementing
animated sprites or particle effects.

Revision: 2.3

Thursday, 8 November 2018


https://www.greenfoot.org/
https://groups.inf.ed.ac.uk/ijp/2018/public/assignment1/assignment.html
https://groups.inf.ed.ac.uk/ijp/2018/public/assignment1/assignment.html

A Proposal for Informatics 1B

(6)

Appendix B |- Feedback

Steve Renals

[1>]1 think that this is a very good proposal, and I very
much like the proposed format. [2>»] I am very com-
fortable with the proposed assessment, and believe it
is a very good way to measure the learning outcomes
achieved on a course that focuses on ’practical pro-
gramming skills’. In my opinion, this is a more reli-
able way to assess the learning outcomes compared to
an exam-based approach

Bob Fisher

Some thoughts:

1. [3»]11’m quite happy with the proposal in general.

2. [4>] Will the groupwork be staged, so that they
can build objects that contribute to larger achieve-
ment? Eg. build some sort of application by start-
ing with base objects and work up to integrating
these into something bigger? It could be for a
mobile phone app. Having something integrated
may be more motivating that lots of classes re-
lated somewhat arbitrarily to different subject ar-
eas.

3. [5»] Maybe a lecture on UML early to help them
visualise data relationships and how data is struc-
tured?

4. [6>] Given the class and interface methodology,
there might be an element of automated testing
like Dubach has done for one of his classes. This
is only part of the assessment of the submissions,
with other factors like you outlined.

Perdita Stevens

[7>]11 support the idea of expanding the time available
for students to learn Java, including an increased focus
on code quality and design issues. [8»] However, the
proposed assessment mechanism is unacceptable. As-
sessing this course purely on the basis of coursework
would be worse than worthless:

1. [9>] Basing the course around the same develop-
ment which is assessed for credit will inhibit con-
scientious students from freely discussing their
work with one another (even in ways that the staff
would actually be happy with), thereby damaging
a major learning modality.

2. It will be utterly trivial for any student who wishes
to obtain a higher mark than their competence
merits to obtain one (by means ranging from
[10>] being over-supported by well-intentioned
members of the same team, who naturally want
good overall behaviour of their application, all the

way to [11>] commissioning work from any of
the many commercial providers);

3. regardless of the extent to which this actually hap-
pens, it will be obvious to everybody involved that
we cannot prevent it;

4. [12>] thereby rendering the marks of students
who don’t cheat, as much as of those who do, un-
reliable;

5. and undermining a major aim of the curriculum
reform, that is, the aim of ensuring that all stu-
dents entering the later years of our degree have
strong programming skills.

[13»] There is a very serious risk of bringing the
School and the University into justified disrepute. This
is not a theoretical possibility. Older members of the
school will remember the Great CS1 Scandal. For
those who do not, it should suffice to observe that even
now, almost 20 years later, if you google “university
edinburgh plagiarism scandal” you will find press arti-
cles about it on your first page of hits. We could expect
the next scandal to be considerably worse, because the
scale is now larger, because students today are more
worried about their precise marks than students were
two decades ago, and because the marketplace for buy-
ing coursework has burgeoned.

If this course went ahead in this form I, for one, would
be very unwilling to have any involvement with its
teaching or assessment: I would do so only under
protest.

Assessing a course taught at this scale, using resources
we can muster, is difficult and there is no perfect an-
swer. I think either of these two approaches would be
strictly better than the proposal:

1. [14>»] Do not assess the course. Let it be pass/fail
based on attendance.

2. Assess the course by programming exam(s), even
if the exam(s) cannot assess everything that we
aim for students to learn during the course. (Bear
in mind the possibility of offering several pro-
gramming exams, either as a ladder where pass-
ing a basic one is required to enter a more ad-
vanced one, or in the manner of tiered GCSEs,
by the way.)

[15>] I do not think coursework should contribute to a
student’s mark in more than a trivial way (10% say).

[16>] Turning to the teaching aspects: there are nat-
urally few details here. Assuming that the element
of summative assessment is removed from the group-
work, I think it will be very challenging, but perhaps
not impossible, to run the course this way. Perhaps one
might use the teaching studios for large meetings of

Paul Anderson, Volker Seeker



(7)

many teams together, one per table, which would en-
able them to have timetabled work together supported
by fewer tutors than one per group. With groups of
4, though, capacity will be an issue, and I would not
suggest groups larger than 4.

Two things that might be one another’s solutions:

1. [17>] Even with the addition of the slow start at
the end of InflA, there will still be a very wide
range of programming ability in the class. How is
this to be handled?

2. [18»] The idea that you can have sufficiently pre-
cise interface specifications to allow implementa-
tions to be swapped between groups, while still
allowing flexibility of design, needs to be demon-
strated.

An interesting approach might be to have a first phase
with very precise interfaces, then actually do a bunch
of swapping between groups, encouraging students to
evaluate and assess one another’s code, and using the
results of that to re-form different groups, with some
groups comprising students who struggled at the early
phases, and others comprising students who produced
perfect implementations. The former groups could
then be supported into completing a relatively easy ap-
plication, while the latter were given their head and en-
couraged to invent variants (perhaps with a culminat-
ing competition).

Further points for consideration:

1. [19>] What will happen when one or more mem-
bers of a group do not engage?

2. [20>] Will outside students still be welcome on
the course, or will it be restricted to Informatics
students only?

3. [21>] The development of a suitable framework,
together with appropriate interface specifications
and tests, will be a lot of work — far more work
than we will be able to throw away and re-do ev-
ery year, so the balance of extension/redevelop-
ment/reuse will be tricky. This is yet another rea-
son for separating it from assessment.

Sharon Goldwater

1. I'm not sure how clear it was to Perdita that
early phases of the course would involve forma-
tive feedback on parts of the design and imple-
mentation.

2. Although Perdita’s position is far more extreme
than mine, [22>»] there is a real concern that some
students will struggle or fail to engage regardless
of our best efforts, and [23>] will end up getting
other people (whether teammates or paid) to do

their work for them. I think we absolutely want
to encourage teammates to help each other, but it
also needs to be clear that the point of this is for
individuals to learn, not to cover for them.

3. [24>] Are we required to have the final mark be
X% of exam and Y% coursework? Could we
instead adopt something more like the Medicine
model, where students must pass all components?
And also make the marks very coarse-grained, eg
A/B/C/D/F only. There could separately be prizes
for good group projects, but these would not con-
tribute to the mark. So, perhaps there could be
a coding exam (maybe less time-pressured than
now; ie shorter?), but in addition or instead, have
an exam where students are given implementa-
tions of the components they would have seen in
the coursework, and asked to identify errors or
comment on style/design. So the exam is inextri-
cably linked to the actual coursework they should
have done.

Under this model I am wondering about using some-
thing like the following four learning outcomes.

1. Implement components of an OO program, given
a specification.

2. Compare different designs and implementations
of OO programs, and comment on their strengths
and weaknesses.

3. Coordinate with other team members, contribute
to a group project, and provide constructive feed-
back on their own and others’ contributions.

4. Plan and organize time, work consistently to a
goal.

#3 [25>] would be the trickiest to deal with at re-
sit, though arguably one could have an exam that
asks about hypothetical situations and what you’d say;
or perhaps the constructive feedback could consist of
commenting on strengths and weaknesses of different
designs (which is much easier to assess by exam).

#4 could be passed by doing some minor continuous
assessment and/or group planning exercises. I do think
there should be some kind of continuous assessment
or early class test to check basic programming skills;
because if students do not get these early, they will not
be able to contribute effectively to the group project.

[26>] Unlike Perdita, I do not think it’s necessarily
a good strategy to put together groups of weak stu-
dents and groups of strong students. I would rather see
students encouraged to recognize the different starting
points of members of their group, and help all mem-
bers progress from there. (Although, the latter is prob-
ably more difficult to achieve and might require more

Revision: 2.3

Thursday, 8 November 2018



A Proposal for Informatics 1B

(8)

resource.)

[27>] One reason I'm still a bit unsure about the group
project idea is because I haven’t explicitly seen that
done anywhere, in contrast to things like pair program-
ming. And if everyone else is doing individual assign-
ments, then it will be a lot easier to find good ones to
re-use. (Perhaps Volker could even test one or two of
them out in OP this year?)

Don Sannella

[28»] I support the proposal. [29»] The only thing that
I somewhat disagree with is the statement that there are
unlikely to be significant opportunities for automark-
ing, just because it must be possible to at least use unit
tests to check correct functionality.

lain Murray

[30>] I"d be happy to see a move towards students
writing and submitting more substantial and interest-
ing programs. [31»] Making one of their first year
courses coursework-only seems like an assessmen-
t/learning trade-off worth making.

Several of my tutees have been unhappy completing
first year not confident with their ability to write real
programs, and I think this move will help. [32>] Hope-
fully the framework can be designed so that the stu-
dents who already have extensive programming expe-
rience can be given challenging things to do.

lan Stark

Thanks for sending this around, and sorry for not re-
plying sooner; I realise this means my response may
not be included in your summary at the meeting. Here
are the topics of my comments on the Inf1B proposal
as tabled:

Version control, testing and documentation
Small-group work and ideas on teaching support
Course-grained grading

P opd =

Code quality and other measures of higher-level

performance

5. Some concern about ensuring passing-grade per-
formance

6. Serious concern about assessment overload of stu-
dents and staff

7. Suggestion of permitting some students to test-out

on request

I've expanded on these below, and would be happy
to meet to talk about any of them at any stage in the
course development:

1. [33>] It’s good to see mention of version control,

testing and documentation. I think it would be ex-
cellent if these were named in the Learning Out-
comes for Inf1B — at the moment those for Infl-
OP include testing but not version control or doc-
umentation.

. [34>] The small-group development framework

in "Proposed Format” seems appealing.

[35»] With around 100 such groups I expect there
will be a substantial overhead in supporting and
monitoring progress. My experience on Infl-
DA has been that a large number of the higher-
performing honours students are keen to help in-
struct new students. They have also been good at
doing so provided they have precise clear guid-
ance as well as support for them in turn. I think
some who are on their second or third time around
doing this tutoring would also be able to coordi-
nate groups of other tutors.

. [36>]1think a coarse-grained grading scheme is a

good idea. I would recommend looking at CMS5
for a university-approved mapping of letter-only
grading into marks. CMSS is actually for ECA,
and has other aspects that may not be appropriate,
but it does at least set a precedent in displacing
the pervasive assumption of linearly-additive per-
centages everywhere. I think having Inf1B return
purely letter grades would be a great step forward.

. I think it’s an excellent idea to include areas like

documentation, code quality and advanced func-
tionality in the assessment criteria, so that higher
grades can reflect broader excellence than simply
working programs.

. [37»] I am concerned that the mechanism pro-

posed will not reliably confirm an individual stu-
dent has demonstrated the basic requirement of
being able to write code that runs.

In the current learning outcomes this is ”Given a
detailed design, develop a working program that
implements the design”. Prior to the deploy-
ment of assessment that directly checked this, it
was routine for staff to report students in second-
year right up to final-year projects who could not
demonstrate this. This was, of course, to the huge
disadvantage of these students. It’s also been vis-
ible in the current Inf1-OP exams that the many
students passing in August do so by writing code
that runs where they could not do that in May;
some also report the dramatic prompt from their
experience of the mock exam during semester,
when they recognise what’s required.

I think it’s essential that any Inf1B course assess-
ment includes for each student some identified oc-
casion on which they write a program that runs
correctly. For many this may be entirely straight-

Paul Anderson, Volker Seeker



9)

forward and done in passing; for a few it will be a
key measure of what they need to achieve before
moving on to richer course content.

[38>] I’'m extremely concerned about assessment
overload for both students and staff in the mech-
anism proposed. [39»] As written, it seems to
say that all of the students’ coursework developed
as a group through semester will be assessed for
the final grade. If true, then this would seriously
damage its role in helping students learn — limit-
ing collaboration, disadvantaging those who take
longer to learn through semester, and poisoning
all group work with worry about grade impact.
The proposal states a desire to avoid “assessment
which would compromise the learning opportuni-
ties” — yet sets out a scheme that does exactly
this.

Conflation of teaching with assessment also
makes for poor assessment: as in the rather differ-
ent domain of machine learning, using the train-
ing set as the test set is a terribly unreliable way
to measure performance.

Is there any possibility of instead using some
specially-prepared coursework for the assess-
ment, distinct from that used to help the stu-
dent learn the material? For example, running
sessions all through Week 11 distinct from the
teaching through semester? [40»] Where students
have had to take exams on separate days to avoid
clashes, we have in recent years simply accepted
signed statements that they will not discuss con-
tent with others until the exam is over. We could
easily do that across a single week, and thereby
use the same material in 8-10 sessions of 40-50
students at a time rather than try to coordinate one
or two giant exams. (This has also been recom-
mended by the external examiner for the current
Inf1-OP exam sittings, where it’s not clear there
is any value in not reusing the same paper.)

If this assessed coursework week built directly
on students’ experience through semester then it
could make it easier to come up with tasks, rather
than the current challenge of setting a problem do-
main that can be approached from scratch within a
single exam sitting. In addition, this would mean
only one week of material needs reworking in suc-
cessive years, rather than the whole programme.
[41>] Finally, it’s at least conceivable to run such
a session in the resit diet, which would not be
possible for assessment using a full 11 weeks of
coursework.

[42>] Could we consider permitting students to
test out of Inf1B, by taking an assessment at the
end of Semester 1? This would allow them to take

other outside courses instead, or even to help with
the course itself, and increase the resource avail-
able to teach the students for whom Java is new
and the need is greatest.

We already have a mechanism to award students
credit in “Recognition of Prior Learning”, which
I guess this might engage. However, even if the
students don’t get transcript credits, I imagine we
might have those who would rather test out and
take something else instead.

Other Feedback

The following points were raised at the teaching com-
mittee meeting'® on 10th October:

1. [43>] Stephen Gilmore questioned whether first

year students were mature enough to manage
group work, and pointed out the issues with SDP,
including the possibility of some students com-
pleting workfiuss on behalf of others.

. [44>] Alan Smaill suggested that we investigate

the content and organisation of similar courses at
other Universities.

Ohttp://web.inf.ed.ac.uk/
infweb/admin/committees/
teaching-committee/meetings-directory/
tc-minutes-10th-october-2018

Revision: 2.3

Thursday, 8 November 2018


http://web.inf.ed.ac.uk/infweb/admin/committees/teaching-committee/meetings-directory/tc-minutes-10th-october-2018
http://web.inf.ed.ac.uk/infweb/admin/committees/teaching-committee/meetings-directory/tc-minutes-10th-october-2018
http://web.inf.ed.ac.uk/infweb/admin/committees/teaching-committee/meetings-directory/tc-minutes-10th-october-2018
http://web.inf.ed.ac.uk/infweb/admin/committees/teaching-committee/meetings-directory/tc-minutes-10th-october-2018

	Background
	Motivation
	Learning Outcomes
	Proposed Format
	Groups
	Assessment
	Activities

	Resources
	Issues Raised
	Learning Outcomes
	Groupwork
	Assessment

	An Example
	Feedback

