
Revision	of	the	Database	Courses	Offered	by	the	School	of	Informatics	
	
The	School	of	Informatics	(SoI)	currently	offers	the	following	database	courses:	
	

• Database	Systems	(INFR10070,	20	Credits,	Level	10),	organised	by	Paolo	
Guagliardo:	this	course	is	an	introduction	to	the	principles	underlying	the	design	and	
implementation	of	database	management	systems.	

• Advanced	Databases	(INFR11011,	10	Credits,	Level	11),	organised	by	Milos	Nikolic:	
this	course	covers	advanced	aspects	of	database	systems,	in	particular,	the	data	
structures	and	algorithms	underlying	modern	database	management	systems.	

• Advanced	Topics	in	Foundations	of	Databases	(INFR11122,	20	Credits,	Level	11),	
organised	by	Andreas	Pieris:	this	course	aims	to	expose	postgraduate	students	to	
current	research	and	developments	in	connection	with	the	principles	of	data	
management,	and	prepare	them	for	conducting	research	in	this	area.	

	
The	above	courses	have	not	been	revised	for	quite	sometime	in	a	coordinated	way	that	
	

1. takes	into	account	their	interconnections	and	overlaps,	
2. considers	possible	links	with	other	courses,	especially	data	science	courses,	offered	

by	the	SoI,	
3. covers	the	state-of-the-art	of	the	field,	and	
4. reflects	the	real	needs	of	our	students,	in	particular,	postgraduate	students.	

	
As	a	result,	we	have	observed	the	following	issues:	
	

• The	postgraduate	courses	(INFR11011	and	INFR11122)	are	in	some	aspects	
outdated,	or	do	not	meet	the	expectations	of	the	students	concerning	the	covered	
material.	

• The	existing	database	courses	run	in	isolation,	without	their	interconnections,	as	
well	as	their	connections	with	other	courses,	especially	data	science	courses,	offered	
by	the	SoI,	being	apparent	to	the	students.		

• An	applied	course,	dedicated	to	modern	database	technologies,	that	prepares	our	
postgraduate	students	for	the	data	science	job	market	is	missing.	

	
The	ultimate	goal	is	to	rectify	this	state	of	affairs.	In	particular,	the	main	objective	is	to	offer	
a	coherent	and	comprehensive	curriculum	that	covers	system	and	foundational	aspects	of	
databases	both	at	an	introductory	and	advanced	level.	To	achieve	this,	we	are	going	to	
	

1. carefully	revise	the	syllabus	of	the	database	courses	INFR10070,	INFR11011	and	
INFR11122	along	the	four	dimensions	given	above,	

2. change	the	name	of	the	database	courses	INFR10070,	INFR11011	and	INFR11122	to	
better	reflect	their	nature,	

3. extend	the	postgraduate	course	INFR11011	from	a	10-credit	to	a	20-credit	course,	
4. revive	and	significantly	revise	the	postgraduate	course	Applied	Databases	

(INFR11015,	10	Credits,	Level	11),	which	was	running	until	2016/2017.	



Introduction	to	Databases	(Revised	Version	of	Database	Systems	(INFR10070))	
 
This	introductory	course	is	quite	stable	and	healthy	in	its	current	form,	which	is	reflected	by	
the	large	number	of	registered	students	and	their	positive	feedback.	The	main	issue	that	we	
have	observed	is	that	the	current	syllabus	contains	too	much	material	to	be	covered	in	a	
reasonable	level	of	detail	during	the	semester.	As	a	result,	there	are	a	couple	of	advanced	
topics	that,	despite	the	fact	that	are	included	in	the	course	description,	are	not	covered	due	
to	lack	of	time.	In	addition,	those	topics	are	too	advanced	for	an	introductory	course	to	
databases.	More	precisely,	the	two	topics	that	can	be	removed	from	the	syllabus	without	
affecting	the	overall	learning	outcomes	the	course	aims	to	deliver	are:	
	

1. Semi-structured	data,	which	will	be	covered	in	the	postgraduate	courses	Principles	
of	Data	Management	(the	revised	version	of	INFR11122)	and	Applied	Databases	(the	
revised	version	of	INFR11015).	

2. Data	warehousing,	which	will	be	covered	in	the	postgraduate	course	Advanced	
Database	Systems	(the	revised	version	of	INFR11011).	

	
The	proposed	changes	in	a	nutshell:	
	

• Remove	semi-structured	data	and	data	warehousing	from	the	syllabus.	
• Change	the	name	of	the	course	to	“Introduction	to	Databases”,	which	better	reflects	

its	nature	as	an	introductory	course.	
	
	
Summary	
	
Data	is	one	of	the	most	important	assets	of	any	enterprise	and	plays	a	central	role	in	many	
aspects	of	everyday	life,	from	healthcare,	to	education,	to	commerce.	In	order	to	be	turned	
into	meaningful	information	that	enables	and	supports	decision	making,	data	must	be	
stored,	maintained,	processed	and	analysed.	Database	management	systems	are	complex	
programs	that	allow	their	users	to	perform	these	tasks	in	an	efficient	and	reliable	way.	
	
Database	systems	encompass	many	areas	of	Computer	Science,	from	formal	logic	to	
programming	languages,	from	operating	systems	to	algorithms	and	data	structures.	This	
course	is	an	introduction	to	the	principles	underlying	the	design	and	implementation	of	
relational	databases	and	database	management	systems.	It	will	cover	in	detail	the	main	
language	for	databases,	SQL,	which	is	an	international	standard	supported	by	virtually	all	
systems	on	the	market	today.	It	will	also	cover	the	theoretical	query	languages	on	which	
SQL’s	core	is	based,	namely	relational	algebra	and	relational	calculus.	Other	important	
topics	covered	during	the	course	include	normal	forms,	transaction	processing,	concurrency	
control,	query	optimisation,	and	incomplete	data.	
	
Course	Description	
	

• Overview	of	the	relational	model	and	database	management	systems.	
• How	to	create,	update	and	query	a	relational	database	with	SQL	.	
• Theoretical	query	languages:	relational	algebra	and	relational	calculus.	



• Analytical	queries:	multisets,	grouping	and	aggregation.	
• Database	design:	constraints	and	normal	forms.	
• Advanced	SQL:	nested	queries,	views,	constraints,	triggers.	
• Deductive	databases:	Datalog	and	recursive	queries.	
• Incomplete	data:	null	values	and	certain	answers.	
• Transaction	management:	concurrent	schedules,	conflict-serializability,	locking.	
• Database	access	from	applications	-	using	SQL	in	a	host	programming	language.	
• Basics	of	storage	and	indexing:	file/page/record	formats,	B+	trees,	static	hashing.	
• Basics	of	query	evaluation	and	optimisation:	join	strategies	and	query	plans.	

	
Other	Requirements	
	
Most	of	the	necessary	background	will	be	introduced	during	the	course,	but	some	
familiarity	with	predicate	logic	is	desirable.	
	
There	are	no	specific	programming	requirements.	Familiarity	with	the	Unix	command	line	is	
a	plus,	though	not	strictly	required.	
	
Assessment	
	
Written	Exam	100%,	Coursework	0%,	Practical	Exam	0%	
	
Additional	Information	(Assessment)	
	
Coursework	is	formative	(assessed	for	learning,	with	feedback)	and	consists	in	writing	SQL	
queries	to	a	given	specification.	
	
Learning	Outcomes	
	
On	completion	of	this	course,	the	student	will	be	able	to:	
	

1. Create	and	modify	a	relational	database	using	standard	software	tools	available	on	
the	market.	

2. Compare	strengths	and	weaknesses	of	different	database	designs.	
3. Process	and	analyse	data	by	means	of	complex	SQL	statements.	
4. Formulate	and	manipulate	queries	in	both	declarative	and	procedural	database	

languages.	
5. Reason	about	the	correctness	and	consistency	of	concurrent	database	interactions	

among	multiple	users.	
6. Understand	how	queries	are	optimised	and	executed	in	relation	with	how	data	is	

stored	and	organised.	
	

	
 



Advanced	Database	Systems	(Revised	Version	of	Advanced	Databases	
(INFR11011))	
 
The	two	main	objectives	are	the	following:	
	

1. Bring	the	course	content	up-to-date	with	current	trends	in	database	systems	
	
The	Advanced	Databases	course	has	not	seen	significant	changes	for	at	least	10	
years.	The	course	content	is	still	entirely	based	on	the	classical	database	textbook	by	
Ramakrishnan	and	Gehrke	from	2003.	Although	this	textbook	remains	a	valuable	
reference	nowadays,	the	data	management	landscape	has	changed	significantly	in	
the	meantime:	we	have	seen	new	database	architectures	such	as	column	stores	and	
in-memory	database	systems,	new	query	processing	techniques	such	as	query	
compilation,	new	indexing	structures,	new	concurrency	control	protocols,	and	recent	
explosions	of	cloud	databases,	scientific	databases,	and	systems	combining	
databases	and	machine	learning.	Studying	these	new	topics	would	allow	students	to	
get	a	better	understanding	of	how	modern	database	technologies	are	used	in	
industry	and	research	nowadays.	This	is	a	valuable	learning	outcome	in	our	opinion.		

	
2. Cover	cutting-edge	research	topics	

	
We	believe	that	postgraduate	students	should	be	exposed	not	just	to	classical	
textbook	material,	but	also	to	recent	research	literature	to	help	them	develop	critical	
thinking	and	research	skills.	This	revised	course	will	include	several	lectures	with	
discussions	of	recent	research	papers,	which	are	normally	not	covered	in	any	
textbook	yet.	Examples	of	such	topics	include	cloud	databases,	systems	for	in-
database	machine	learning,	scientific	(array)	databases,	etc.	

	
The	proposed	changes	in	a	nutshell:	
	

• Update	the	content	of	the	course	to	better	reflect	the	modern	trends	in	database	
management	systems.		

• Extend	the	course	from	a	10-credit	to	a	20-credit	course.	Covering	the	
aforementioned	new	topics	along	with	the	existing	material	would	not	be	possible	
within	the	scope	of	a	10-credit	course.	

• Change	the	name	of	the	course	to	“Advanced	Database	Systems”.	This	name	better	
reflects	the	system-oriented	nature	of	the	course,	and	would	hopefully	mitigate	
confusions	seen	in	previous	years	among	students,	who	often	think	of	“Advanced	
Databases”	as	being	an	advanced	SQL	course,	which	it	is	not.	

	
	
Summary	
	
Database	management	systems	are	at	the	core	of	computer	applications	that	need	to	store,	
manipulate,	and	query	data.	This	course	takes	a	deep	dive	into	how	modern	database	
systems	function	internally,	from	studying	their	high-level	design	to	understanding	the	



underlying	data	structures	and	algorithms	used	for	efficient	data	processing.	The	course	
covers	a	range	of	data	management	techniques	from	both	commercial	systems	and	cutting-
edge	research	literature,	enabling	students	to	apply	these	techniques	to	other	fields	of	
computer	science.	The	covered	topics	include	database	architecture,	storage	manager,	data	
models	(row,	columnar),	indexing	(tree-based,	hash	tables),	transaction	processing	(ACID,	
concurrency	control),	crash	recovery,	parallel	architectures	(multi-core,	distributed),	data	
warehousing	and	decision	support	(OLAP,	materialised	views).	
	
Course	Description	
	

• Database	systems	architectures,	row	stores	and	column	stores,	OLTP	vs.	OLAP,	in-
memory	database	systems.	

• Storage:	secondary-storage	devices.	
• Indexing:	tree-based	and	hash-based	techniques,	multi-dimensional	indexing,	

learning	indices	from	data.	
• Write-optimised	data	structures:	LSM	trees,	LSM	hash	tables,	B^eps	trees.	
• Query	evaluation:	sorting	and	join	processing,	selection,	projection,	aggregation,	

query	compilation.	
• Query	optimisation:	cardinality	estimation,	cost-based	query	optimisation,	dynamic	

programming,	rule-based	optimisation,	learning	query	plans.	
• Transaction	management:	ACID	properties,	concurrency	control,	locking	and	multi-

version	protocols,	crash	recovery.	
• Distributed	database	systems:	parallel	query	evaluation,	distributed	transaction	

processing.	
• Data	warehousing	and	decision	support:	OLAP,	materialised	views,	incremental	view	

maintenance.	
• Stream	processing	systems,	data	streaming	algorithms.		
• Scientific	(array)	databases,	cloud	databases,	database	systems	for	machine	learning.	

	
Other	Requirements	
	
The	course	assumes	an	understanding	of	algorithms	and	data	structures	(e.g.,	quick	sort,	
merge	sort,	binary	trees,	hash	tables,	big-O	notation).		
	
A	good	level	of	programming	is	assumed	and	will	not	be	covered	during	lectures.	The	
coursework	will	involve	implementing	different	components	(e.g.,	data	structures,	query	
processing	algorithms)	of	a	typical	database	system.		
	
Assessment	
	
Written	Exam	70%,	Coursework	30%,	Practical	Exam	0%	
	



Additional	Information	(Assessment)	
	
The	coursework	consists	of	two	programming	assignments	where	students	will	design	and	
implement	components	of	a	database	management	system,	experimentally	evaluate	their	
work,	and	write	a	report	on	their	findings.	
	
Learning	Outcomes	
	
On	completion	of	this	course,	the	student	will	be	able	to:	
	

1. Understand	how	database	management	systems	function	internally.	
2. Interpret	and	comparatively	criticise	database	systems	architectures.	
3. Implement	major	components	of	a	database	management	system	and	analyse	their	

performance.	
4. Understand,	analyse,	and	compare	the	fundamental	query	evaluation	and	

concurrency	control	algorithms.	
5. Identify	trade-offs	among	database	systems	techniques	and	contrast	

distributed/parallel	techniques	for	OLTP	and	OLAP	workloads.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Principles	of	Data	Management	(Revised	Version	of	Advanced	Topics	in	
Foundations	of	Databases	(INFR11122))	
 
The	two	main	objectives	are	the	following:	
	

1. Make	the	course	content	accessible	to	postgraduate	students	
	
The	current	version	of	the	Advanced	Topics	in	Foundations	of	Databases	course	aims	
to	prepare	students	for	conducting	research	on	the	foundations	of	data	
management.	To	this	end,	several	cutting-edge	topics	are	covered	such	as	
approximation	of	queries,	semantic	optimisation	of	queries	under	constraints,	
querying	tree-structured	data	using	Monadic	Second-Order	(MSO)	logic	and	
alternating	tree	automata,	expressive	graph	query	languages,	and	advanced	aspects	
of	knowledge-enriched	data.	However,	the	majority	of	our	postgraduate	students	do	
not	have	the	background	on	computational	logic,	complexity	and	computability	
theory	for	following	the	covered	topics.	Thus,	the	course	in	its	current	form	does	not	
serve	its	purpose,	which	is	confirmed	by	the	low	number	of	registered	students.	
	

2. Demonstrate	the	importance	of	studying	real-life	problems	in	a	mathematically	
rigorous	way	
	
This	second	objective	is	not	completely	unrelated	with	the	first	one.	Since,	as	
discussed	above,	the	course	covers	cutting-edge	research	topics,	which	are	
technically	very	challenging,	it	is	difficult	for	the	students	to	relate	the	content	of	the	
course	with	real-life	database	concepts.	Moreover,	it	is	extremely	difficult	for	the	
students	to	understand	the	implications	of	the	foundational	studies	covered	in	the	
course	for	real-life	problems	and	applications.	
	

The	proposed	changes	in	a	nutshell:	
	

• Significantly	simplify	the	technical	content	of	the	course	to	help	the	students	to	
understand	the	foundations	of	data	management,	and	realise	the	relevance	of	
studying	real-life	database	problems	from	a	mathematical	point	of	view.	

• Make	the	course	self-contained	by	introducing	during	the	lectures	all	the	necessary	
concepts	and	technical	tools	from	logic	and	complexity	theory.	

• Change	the	name	of	the	course	to	“Principles	of	Data	Management”,	which	better	
reflects	the	nature	of	the	revised	course.	

	
	
Summary	
	
Data	is	everywhere,	coming	in	different	shapes	and	volumes,	and	needs	to	be	stored	and	
managed	using	appropriate	data	management	technologies.	The	basic	software	package	
that	supports	the	management	of	data	is	called	a	database	management	system	(DBMS).	
The	main	goal	of	this	course	is	to	explain	some	of	the	underlying	principles	and	
characteristics	of	DBMSs.	More	precisely,	this	course	will	explain	how	real-life	concepts	
(such	as	a	database	and	a	query)	and	phenomena	(such	as	incompleteness	and	



inconsistency	of	data),	can	be	abstracted	from	their	physical	implementation	and	formalised	
using	tools	coming	from	other	areas	such	as	computational	logic	and	graph	theory.	This	will	
pave	the	way	towards	the	study	of	query	evaluation,	that	is,	the	central	task	of	extracting	
meaningful	information	from	(possibly	incomplete	and	inconsistent)	data	by	means	of	
queries,	following	a	mathematically	rigorous	approach.	This	analysis	will	expose	the	source	
of	complexity	in	evaluating	a	query	over	a	database,	which	in	turn	provides	ideas	and	tools	
on	how	to	devise	more	efficient	query	evaluation	algorithms.	
	
Course	Description	
	

• Relational	model	-	the	classics:	data	model,	relational	algebra,	relational	calculus	
(first-order	queries),	first-order	query	evaluation,	static	analysis	of	first-order	queries	
(satisfiability	and	containment).		

• Conjunctive	queries	(CQs):	syntax	and	semantics	(via	the	notion	of	homomorphism),	
CQ	evaluation,	static	analysis	of	CQs	(satisfiability,	containment	and	the	
Homomorphism	Theorem),	minimization	of	CQs.	

• Fast	conjunctive	query	evaluation:	acyclic	CQs,	evaluating	acyclic	CQs	(Yannakaki’s	
algorithm),	semantically	acyclic	CQs	and	their	evaluation,	size	bounds	for	joins	(AGM	
bound),	worst-case	optimal	join	algorithms.		

• Adding	recursion	-	Datalog:	inexpressibility	of	recursive	queries,	syntax	and	
semantics	of	Datalog,	Datalog	query	evaluation,	static	analysis	of	Datalog	queries,	
Datalog	vs.	first-order	queries.	

• Uncertainty	-	reasoning	over	possible	worlds:	incomplete	databases,	inconsistent	
databases,	knowledge-enriched	databases.	

• Tree-structured	data:	data	model,	tree	pattern	queries	(syntax	and	semantics),	tree	
pattern	query	evaluation,	minimization	of	tree	pattern	queries.	

• Graph-structured	data:	data	model,	basic	query	languages	(regular	path	queries	and	
extensions	thereof),	query	evaluation,	static	analysis.	

	
Other	Requirements	
	
While	there	are	no	formal	prerequisites,	it	is	recommended	that	students	taking	this	course	
have	passed	an	introductory	course	in	Databases	such	as	the	undergraduate	course	
Introduction	to	Databases	(the	revised	version	of	Database	Systems	(INFR10070)).	It	is	also	
assumed	that	students	have	a	basic	familiarity	with	complexity	theory	(standard	complexity	
classes	such	as	PTIME	and	NP,	and	the	notion	of	completeness).	In	any	case,	this	course	is	
self-contained,	and	all	the	necessary	tools	will	be	properly	introduced	during	the	lectures.	
	
Assessment	
	
Written	Exam	0%,	Coursework	100%,	Practical	Exam	0%	
	
Additional	Information	(Assessment)	
	
The	coursework	consists	of	three	essays	(each	worth	15%),	a	final	project	(worth	40%),	and	
an	in-class	presentation	of	the	final	project	(worth	15%).		



Essay	guidelines.	The	course	is	split	into	seven	topics	(see	the	course	description	above	
where	each	bullet	corresponds	to	a	topic).	For	each	topic,	a	list	of	conference/journal	
papers	will	be	given	at	the	beginning	of	the	semester.	For	each	essay,	the	students	should	
pick	one	paper	(in	particular,	for	Essay	1	a	paper	from	topics	1-3,	for	Essay	2	a	paper	from	
topics	4-5,	and	for	Essay	3	a	paper	from	topics	6-7),	and	present:	

• A	summary	of	the	paper.	
• Analysis	and	critical	thoughts;	e.g.,	a	criticism	of	the	paper,	ideas	for	extending	its	

results,	or	analysis	of	follow-up	papers	that	show	how	the	ideas	of	the	paper	under	
review	have	influenced	the	field.		

Crucially,	the	essay	must	be	understood	by	someone	who	has	not	read	the	paper.	Of	course,	
in	reality,	it	will	be	marked	by	someone	who	has	read	the	paper,	but	still	this	is	an	important	
criterion	that	will	be	used	in	marking.	

Project	guidelines.	Projects	follow	the	same	path	as	essays	by	choosing	a	paper,	not	
previously	studied,	from	topics	1-7,	but	a	new	contribution	done	by	the	student	is	also	
required.	This	new	contribution	could	be,	for	example:	

• An	implementation	of	a	theoretical	algorithm	with	performance	analysis.	
• An	extension	of	some	of	the	results	to	cover	new	cases.	
• An	improvement	for	an	existing	solution,	perhaps	under	some	restrictions.	

The	above	list	is	by	no	means	exhaustive.	It	is	up	to	the	student	to	decide	what	will	be	the	
new	contribution,	which	is	an	important	criterion	that	will	be	used	in	marking.	

Learning	Outcomes	
	
On	completion	of	this	course,	the	student	will	be	able	to:	

1. Abstract	relational,	tree-structured,	and	graph-structured	data,	and	queries	over	this	
data,	from	their	physical	implementation,	and	formalise	them	in	a	rigorous	way.	

2. Analyse	the	complexity	of	querying	relational,	tree-structured,	and	graph-structured	
data,	isolate	the	source	of	complexity	of	query	evaluation,	and	understand	the	key	
ideas	that	lead	to	more	efficient	query	evaluation	algorithms.	

3. Understand	the	semantics	of	recursive	queries,	in	particular,	Datalog	queries,	
analyse	the	complexity	of	evaluating	Datalog	queries,	and	model	real-life	queries	and	
problems	in	a	declarative	way	using	Datalog.	

4. Understand	how	real-life	phenomena	concerning	data,	in	particular,	incompleteness,	
inconsistency,	and	the	existence	of	implicit	knowledge	of	the	underlying	domain,	can	
be	formalised	in	a	rigorous	way.	

5. Analyse	the	complexity	of	querying	incomplete,	inconsistent,	and	knowledge-
enriched	data,	and	understand	the	reasons	that	lead	to	intractability.	

6. Read,	analyse,	and	summarize	scientific	papers.	

	



Revised	Version	of	Applied	Databases	(INFR11015)	
 
The	Applied	Databases	course	was	running	until	2016/2017	by	Sebastian	Maneth,	who	is	
now	a	Professor	at	the	University	of	Bremen.	The	goal	is	to	revive	and	significantly	revise	
this	course,	which	will	be	offered	in	2020/2021,	and	organised	by	Yang	Cao	who	is	currently	
a	Chancellor's	Fellow.	The	two	main	objectives	are	the	following:	
	

1. Bring	the	course	content	up-to-date	
	
Many	topics	that	are	covered	in	the	2016/2017	version	of	the	course	have	to	be	
either	updated	in	order	to	reflect	the	latest	advances	in	the	area,	or	completely	
removed	from	the	curriculum.	Here	are	some	examples:	(a)	ER	diagrams	are	not	the	
go-to	method	for	designing	a	database	schema	anymore,	given	the	diverse	range	of	
application	requirements	and	database	architectures;	(b)	index	design	needs	also	to	
include	methods	based	on	machine	learning	(ML)	to	reflect	the	latest	developments	
in	database	auto-tuning	using	ML;	and	(c)	graph	datasets	are	now	preferably	
processed	using	native	graph	computing	systems	and	graph	databases,	instead	of	
mapping	them	to	relational	databases	and	using	traditional	database	systems.	

	
2. Cover	emerging	topics	and	prepare	students	for	the	data	science	job	market	

	
Databases	is	a	fast	expanding	area	that	covers	a	wide	range	of	emerging	topics	that	
go	beyond	SQL	and	traditional	database	systems.	However,	several	of	those	topics,	
which	are	now	becoming	mainstream	in	database	industry	and	research,	e.g.,	graph	
databases,	spatial	and	temporal	databases,	and	database	systems	for	ML,	are	not	
covered	in	the	2016/2017	version	of	the	course.	Including	these	new	topics	would	
allow	postgraduate	students	to	become	familiar	with	recent	database	
developments,	and	prepare	themselves	for	the	data	science	job	market.	

	
The	proposed	changes	in	a	nutshell:		
	

• Update	the	existing	content	of	the	2016/2017	version	of	the	course	to	better	reflect	
the	latest	trends	in	the	area	of	databases.		

• Include	emerging	topics	such	as	distributed	and	cloud	databases,	parallel	computing	
frameworks,	graph	databases	and	analytics,	spatial	and	temporal	databases,	access	
controls	and	privacy,	and	databases	for	ML,	that	would	help	the	students	to	prepare	
themselves	for	the	data	science	job	market.	

	
	
Summary	
	
Databases,	as	one	of	the	core	building	blocks	of	data	science,	is	a	fast	expanding	area	that	
encompass	a	wide	range	of	emerging	topics	that	go	beyond	SQL	and	traditional	database	
systems.	The	goal	of	the	course	is	to	familiarise	students	with	such	emerging	topics,	and	
prepare	them	for	the	data	science	job	market.	The	course	covers	a	range	of	recent	
developments	in	data	management,	providing	a	general	toolkit	and	methodology	of	how	
modern	database	technologies	can	be	effectively	used	in	diverse	data-driven	applications.	



The	covered	topics	include	cloud	and	distributed	databases,	graph	databases	and	analytics,	
parallel	computing	frameworks,	spatial	and	temporal	databases,	and	database	systems	for	
machine	learning.	The	course	will	also	provide	additional	references	for	those	students	who	
want	to	pursue	further	studies	in	areas	related	to	data	management	and	data	science.	
	
Course	Description	
	

• Data	models:	relational	data,	key-value	stores,	trees,	graphs,	triple	stores,	document	
stores,	arrays.	

• Relational	databases:	SQL,	PL/SQL,	database	connectors,	database	(auto-)tuning,	
database	administration	(access	controls,	permissions,	privacy	and	security).	

• Parallel,	distributed	and	cloud	databases:	architectures,	parallel/distributed	query	
processing,	data	partition,	consistency,	transactions,	and	example	systems	including	
Greenplum	(parallel	database),	Snowflake	and	Redshift	(cloud	database).	

• NoSQL	databases:	why	NoSQL,	key-value	stores,	column-family	stores,	document	
stores.	

• Large	scale	parallel	computing	frameworks:	MapReduce,	dataflow,	HPC,	
BSP/AP/GAS.	

• Graph	databases:	XML	(DTD,	XPath,	XSLT),	RDF	databases	(RDF	model,	SPARQL,	
RDFS),	graph	databases	(property	graph	model,	languages:	Cypher/G-core/GSQL),	
graph	analytics	(algorithms	and	systems).	

• Spatial	and	temporal	databases:	data	models	and	languages,	query	processing,	
spatial	and	temporal	index,	systems.	

• Databases	for	machine	learning	(ML):	data	wrangling,	in-database	learning,	
declarative	ML,	database	systems	for	managing	ML	models.	

 
Other	Requirements	
	
While	there	are	no	formal	prerequisites,	it	is	assumed	that	students	taking	this	course	are	
familiar	with	basic	Linux	system	scripting	and	programming,	have	a	basic	understanding	of	
relational	databases	(in	particular,	have	passed	an	introductory	course	in	Databases	such	as	
the	undergraduate	course	Introduction	to	Databases,	the	revised	version	of	Database	
Systems	(INFR10070)),	and	have	experience	in	algorithm	design,	analysis	and	
implementation.	In	any	case,	this	course	will	be	self-contained.	
	
Assessment	
	
Written	Exam	0%,	Coursework	100%,	Practical	Exam	0%	
	
Additional	Information	(Assessment)	
	
Summative	assessment.	The	coursework	consists	of	one	experimental	assignment	(40%)	
and	one	report	(60%):	
	

• For	the	experimental	assignment,	the	students	will	be	asked	to	carry	out	an	
experimental	study	and	write	a	report	based	on	it.	It	may	require	some	lightweight	



scripting	for	data	preparation,	configuration,	basic	algorithm	implementation,	and	
analysis	of	results.	This	is	to	allow	students	to	get	hands-on	experience	in	deploying,	
using,	and	tuning	modern	database	systems.	

	
• For	the	report,	the	students	will	be	asked	to	write	a	survey	on	one	of	the	topics	

covered	during	the	course.	This	survey	will	be	based	on	(but	not	limited	to)	a	list	of	
references	that	will	be	provided	at	the	beginning	of	the	semester.	Below	is	what	the	
students	are	expected	to	do:	

 
1. Pick	a	set	of	systems/algorithms/frameworks	on	a	relevant	topic,	and	discuss	

their	main	objective.	
2. Develop	a	set	of	criteria	for	evaluating	the	systems/algorithms/frameworks,	

i.e.,	a	set	of	key	factors	for	developing	a	concrete	technique	to	achieve	the	
main	objective.	Justify	why	these	criteria	are	indeed	important.	

3. Assess	the	systems/algorithms/frameworks	based	on	the	selected	criteria,	
comment	on	their	limitations,	and	suggest	possible	improvements.	

	
Formative	assessment.	The	students	will	be	asked	to	construct	a	“complete”	list	of	open-
source	systems	(or	algorithm	implementations)	related	to	the	course,	and	build	a	personal	
knowledge	base	for	the	available	database	systems	for	data	science.	The	students	are	
expected	to	try	out	the	systems	and	understand	what	they	offer	and	how	they	perform.	
	
Learning	Outcomes	
	
On	completion	of	this	course,	the	student	will	be	able	to:	
	

1. Understand	how	different	types	of	datasets	are	modelled,	stored,	and	queried.	
2. Tune	database	systems	to	meet	the	performance,	scalability,	and	privacy	and	

security	requirements	imposed	by	database	applications.	
3. Understand	and	use	large	scale	parallel	frameworks	to	process	datasets,	and	

compare	them	with	conventional	database	systems.	
4. Design,	analyse,	and	implement	search	algorithms	over	graph	data	based	on	various	

search	criteria.	
5. Know	when	to	use	which	system/method/algorithm	for	a	given	application	and	

justify	the	choice.	
6. Write	a	survey	of	research	papers	and	systems.	

	
	
	
	
	


